Ймовірності магнітуд екстремальних землетрусів по всьому світу за допомогою рангового впорядкування
DOI:
https://doi.org/10.24028/gj.v46i6.306222Ключові слова:
закон Гутенберга-Ріхтера, рангова статистика, амплітудно-частотний розподіл, імовірність величини, b-значення, геостатистикаАнотація
З давніх часів імовірність землетрусів хвилює людство, і оцінювання потенційних магнітуд має вирішальне значення для багатьох аспектів безпеки. У статті наведено ймовірнісний аналіз екстремальних магнітуд у 16 регіонах земної кулі, що характеризуються різною сейсмічністю, щоб перевернути традиційне запитання — «яка ймовірність пов’язана з певними величинами». Ми об’єднуємо закон ГутенбергаРіхтера та рангову статистику в методологічному підході, щоб оцінити, які діапазони величин можна майже напевно (тобто з 95%) очікувати, а які величини стають малоймовірними за межами цих діапазонів.
Цей підхід дає можливість оцінити ймовірності максимальних величин для регіону та порівняти з ними максимальні величини (mr), які виявилися в реальності. Метод досліджує максимальні величини, які можуть виникнути або бути перевищені з ймовірністю 95%, якщо відповідні mr дорівнюють або більше цих 95%-них прогнозів, і наскільки ймовірно, що ці mr можуть бути відтворені або перевищені. З цих статистичних міркувань ми припускаємо відсутність великих величин в Альпах і надлишок по той бік Атлантичного океану.
Посилання
Al-Rasyid, M.B., Rusman, M.N., Hamonangan, D., Supendi, P., & Kirana, K.H. (2021). The Spatio-temporal Analysis of b-value in the Banda Arc, Indonesia. IOP Conference Series: Earth and Environmental Science (Vol. 873, 6 p). https://doi.org/10.1088/1755-1315/873/1/012010.
Amaro-Mellado, J.L., & Tien Bui, D. (2020). GIS-Based Mapping of Seismic Parameters for the Pyrenees. ISPRS International Journal of Geo-Information, 9(7), 452. https://doi.org/10.3390/ijgi9070452.
Arroyo-Solórzano, M., & Linkimer, L. (2021). Spatial variability of the b-value and seismic potential in Costa Rica. Tectonophysics, 814, 228951. https://doi.org/10.1016/j.tecto.2021.228951.
Bayrak, Y., Öztürk, S., Koravos, G.C., Leventakis, G.A., & Tsapanos, T.M. (2008). Seismicity assessment for the different regions in and around Turkey based on instrumental data: Gumbel first asymptotic distribution and Gutenberg-Richter cumulative frequency law. Natural Hazards and Earth System Sciences, 8(1), 109—122. https://doi.org/10.5194/nhess- 8-109-2008.
Cheng, Q.M., & Sun, H.Y. (2018). Variation of singularity of earthquake-size distribution with respect to tectonic regime. Geoscience Frontiers, 9(2), 453—458. https://doi.org/10.1016/j.gsf.2017.04.006.
Clauser, C. (2014). Einführung in die Geophysik, ed.
Berlin-Heidelberg: Springer, 407 p. https:// doi.org/10.1007/978-3-642-04496-0 (in German).
Das, R., Wason, H.R., Gonzalez, G., Sharma, M.L., Choudhury, D., Lindholm, C., Roy, N., & Salazar, P. (2018). Earthquake Magnitude Conversion Problem. Bulletin of the Seismological Society of America, 108(4), 1995—2007. https://doi.org/10.1785/0120170157.
Delvaux, D., Mulumba, J.L., Sebagenzi, M.N.S., Bondo, S.F., Kervyn, F., & Havenith, H.B. (2017). Seismic hazard assessment of the Kivu rift segment based on a new seismotectonic zonation model (western branch, East African Rift system). Journal of African Earth Sciences, 134, 831—855. https://doi.org/10.1016/j.jafrearsci. 2016.10.004.
Domej, G. (2009). Verifizierung des Gutenberg-Richter-Gesetzes anhand ausgewählter Regionen unterschiedlicher Seismizität. Bachelor Thesis. Karl-Franzens University, Graz, 51 p. https://
doi.org/10.13140/RG.2.2.24670.05444 (in German).
Domej, G. (2014). Vérification de la Loi de Gutenberg-Richter dans des régions sélectionnées caractérisées par des activités sismiques différentes. Poster & abstract, 1er Congrès de la SAG, Société Algérienne de Géophysique, Bab Ezzouar/Algiers. https://doi.org/10.13140/RG.2. 2.12087.14247 (in French).
Domej, G. (2016). Landslide Risk due to Seismic Activity in Norther Algeria: Triggers & Consequences. Poster & abstract, 1st International Conference of the ArabGU, Arabian Geoscience Union, Bab Ezzouar/Algiers. https://doi.org/10.13140/RG.2.2.18798.02885.
Dziewonski, A.M., Ekström, G., & Salganik, M.P. (1996). Centroid-moment tensor solutions for January—March 1995. Physics of the Earth and Planetary Interiors, 93(3-4), 147—157. https://doi.org/10.1016/0031-9201(95)03111-1.
EMSC (European-Mediterranean Seismological Centre). (2020). Earthquake data of the Real Time Seismicity Catalog. Retrieved from https://www.emsc-csem.org/.
Flinn, E.A., Engdahl, E.R., & Hill, A.R. (1974). Seismic and geographical regionalization. Bulletin of the Seismological Society of America, 64(2-3), 771—992. https://doi.org/10.1785/BSSA0643-20771.
Frohlich, C., & Davis, S.D. (1993). Teleseismic b values; Or, much ado about 1.0. Journal of Geophysical Research: Solid Earth, 98(B1), 631—644. https://doi.org/10.1029/92JB01891.
Gasperini, P., Lolli, B., & Castellaro, S. (2015). Comparative Analysis of Regression Methods Used for Seismic Magnitude Conversions. Bulletin of the Seismological Society of America, 105(3), 1787—1791. https://doi.org/10.1785/ 0120150018.
Godano, C., Lippiello, E., de Arcangelis, L. (2014). Variability of the b value in the Gutenberg-Richter distribution. Geophysical Journal International, 199(3), 1765—1771. https://doi.org/ 10.1093/gji/ggu359.
Gorbatov, A., Kostoglodov, V., Suárez, G., & Gordeev, E. (1997). Seismicity and structure of the Kamchatka Subduction Zone. Journal of Geophysical Research, 102(B8), 17883—17898. https://doi.org/10.1029/96JB03491.
Grünthal, G., & Wahlström, R. (2012). The European-Mediterranean Earthquake Catalogue (EMEC) for the last millennium. Journal of Seismology, 16, 535—570. https://doi.org/10.1007/s10950-012-9302-y.
Grünthal, G., Wahlström, R., & Stromeyer, D. (2013). The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900—2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). Journal of Seismology, 17, 1339—1344. https://doi.org/10.1007/s10950-013-9379-y.
Gulia, L., & Wiemer, S. (2010). The influence of tectonic regimes on the earthquake size distribution: A case study for Italy. Geophysical Research Letters, 37(10), L10305. https://doi.org/10.1029/2010GL043066.
Gutenberg, B. (1945). Magnitude determination for deep-focus earthquakes. Bulletin of the Seismological Society of America, 35(3), 117—130. https://doi.org/10.1785/BSSA0350030117.
Gutenberg, B., & Richter, C.F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34(4), 185—188. https://doi.org/10.1785/BSSA0340040185.
Gutenberg, B., & Richter, C.F. (1956). Magnitude and energy of earthquakes. Annali di Geofisica, 9(1), 1—15. https://doi.org/10.4401/ag-5590 (as a reprint).
Hamdache, M., Peláez, J.A., Kijko, A., & Smit, A. (2017). Energetic and spatial characterization of seismicity in the Algeria—Morocco region. Natural Hazards, 86, 273—293. https://doi.org/ 10.1007/s11069-016-2514-7.
Hanks, T.C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348—2350. https://doi.org/10.1029/JB084iB05p02348.
Harðarson, H.B. (2015). A study of earthquakes along the Mid-Atlantic Ridge between Charlie-Gibbs and the Azores. Bachelor Thesis. University of Iceland, Reykjavik, 44 p.
Hergarten, S. (2002). Self-Organized Criticality in Earth Systems, ed. 1. Berlin-Heidelberg: Springer, 272 p. https://doi.org/10.1007/978-3-662-04390-5.
Hutton, L.K., & Jones, L.M. (1993). Local magnitudes and apparent variations in seismicity rates in Southern California. Bulletin of the Seismological Society of America, 83(2), 313—329. https://doi.org/10.1785/BSSA0830020313.
ISC (International Seismological Centre). (2020). Earthquake data of the ISC Bulletin. Retrieved from https://doi.org/10.31905/D808B830.
Kagan, Y.Y. (1994). Observational evidence for earthquakes as a nonlinear dynamic process. Physica D: Nonlinear Phenomena, 77(1-3), 160—192. https://doi.org/10.1016/0167-2789 (94)90132-5.
Kagan, Y.Y., & Knopoff, L. (1984). A stochastic model of earthquake occurrence. Proc. of the 8th International Conference on Earthquake Engineering, San Francisco (Vol. 1, pp. 295—302).
Kamer, Y. (2014). Minimum sample size for detection of Gutenberg-Richter’s b-value. Preprint at arXiv, no. 1410.1815, 11 p. Retrieved from https://arxiv.org/ftp/arxiv/papers/1410/ 1410.1815.pdf.
Kamer, Y., & Hiemer, S. (2015). Data-driven spatial b value estimation with applications to California seismicity: To b or not to b. Journal of Geophysical Research: Solid Earth, 120(7), 5191—5214. https://doi.org/10.1002/2014JB011510.
Kanamori, H. (1977). The energy release in great earthquakes. Journal of Geophysical Research, 82(20), 2981—2987. https://doi.org/10.1029/JB082i020p02981.
Leyton, F., Ruiz, S., & Sepúlveda, S.A. (2009). Preliminary re-evaluation of probabilistic seismic hazard assessment in Chile: from Arica to Taitao Peninsula. Advances in Geosciences, 22, 147—153. https://doi.org/10.5194/adgeo- 22-147-2009.
Lolli, B., Gasperini, P., & Vannucci, G. (2014). Empirical conversion between teleseismic magnitudes (mb and Ms) and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian scale. Geophysical Journal International, 199(2), 805—828. https://doi.org/10.1093/gji/ggu264.
Lough, A.C., Wiens, D.A., & Nyblade, A. (2018). Reactivation of ancient Antarctic rift zones by intraplate seismicity. Nature Geoscience, 11, 515—519. https://doi.org/10.1038/s41561-018-0140-6.
MATLAB. (2019). Software by MathWorks Inc., version 2019b.
Merz, H.A., & Cornell, C.A. (1973). Seismic risk analysis based on a quadratic magnitude-
frequency law. Bulletin of the Seismological Society of America, 63(6-1), 1999—2006. https://doi.org/10.1785/BSSA0636-11999.
Mogi, K. (1962). Magnitude-Frequency Relationship for Elastic Shocks Accompanying Fractures of Various Materials and Some Related Problems in Earthquakes. Bulletin of the Earthquake Research Institute, University of Tokyo, 40, 831—853.
Mogi, K. (1967). Regional Variation in Magnitude-Frequency Relation of Earthquake. Bulletin of the Earthquake Research Institute, University of Tokyo, 45, 313—325.
Mori, J., & Abercrombie, R.E. (1997). Depth dependence of earthquake frequency‐magnitude distributions in California: Implications for rupture initiation. Journal of Geophysical Research: Solid Earth, 102(B7), 15081—15090. https://doi.org/10.1029/97JB01356.
Nanjo, K.Z., & Yoshida, A. (2021). Changes in the b value in and around the focal areas of the M6.9 and M6.8 earthquakes off the coast of Miyagi prefecture, Japan. Earth Planets Space, 73, 176. https://doi.org/10.1186/s40623-021-01511-3.
NASA (National Aeronautics and Space Administration). (2020). Satellite image of the Earth on a Robinson Projection. Retrieved from https://commons.wikimedia.org/wiki/File:Robinson-projection.jpg (on 8th of April 2023).
Nuttli, O.W. (1983). Average seismic source-parameter relations for mid-plate earthquakes. Bulletin of the Seismological Society of America, 73(2), 519—535. https://doi.org/10.1785/BSSA0730020519.
Nuttli, O.W. (1973). Seismic wave attenuation and magnitude relations for eastern North America. Journal of Geophysical Research, 78(5), 876—885. https://doi.org/10.1029/JB078i005p00876.
Nowroozi, A.A., & Ahmadi, G. (1986). Analysis of earthquake risk in Iran based on seismotectonic provinces. Tectonophysics, 122(1-2), 89—114. https://doi.org/10.1016/0040-1951(86)90160-5.
Rhoades, D.A. (1996). Estimation of the Gutenberg-Richter relation allowing for individual earthquake magnitude uncertainties. Tectonophysics, 258(1-4), 71—83. https://doi.org/10.1016/0040-1951(95)00182-4.
Richter, C.F. (1935). An instrumental earthquake magnitude scale. Bulletin of the Seismological Society of America, 25(1), 1—32. https://doi.org/10.1785/BSSA0250010001.
Sandri, L., & Marzocchi, W. (2007). A technical note on the bias in the estimation of the b-value and its uncertainty through the Least Squares technique. Annals of Geophysics, 50(3), 329—339. https://doi.org/10.4401/ag-4422.
Schorlemmer, D., Wiemer, S., & Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437, 539—542. https://doi.org/10.1038/nature04094.
Schwartz, D.P., & Coppersmith, K.J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault zones. Journal of Geophysical Research: Solid Earth, 89(B7), 5681—5698. https://doi.org/10.1029/JB089iB07p05681.
Shah, H.C., Mortgat, C.P., Kiremidjan, A., & Zsutty, T.C. (1975). A study of seismic risk for Nicaragua, Part I and II. The John A. Blume Earthquake Engineering Center, Department of Civil Engineering, Standford University, Stanford, report no. 11, 369 p. Retrieved from https://searchworks.stanford.edu/view/vn596mw3936.
SHARE (Seismic Hazard Harmonization in Europe). (2020). Earthquake data of the SHARE European Earthquake Catalogue (SHEEC). Retrieved from https://www.emidius.eu/SHEEC/.
Shearer, P.M. (2009). Introduction to Seismology, ed. 2. Cambridge University Press, 412 p.
Singh, C. (2016). Spatial variation of seismic b-values across the NW Himalaya. Geomatics, Natural Hazards and Risk, 7(2), 522—530. https://doi.org/10.1080/19475705.2014.941951.
Sornette, D. (2006). Critical Phenomena in Natural Sciences — Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, ed. 2. Springer, Berlin-Heidelberg, 528 p. https://doi.org/10.1007/3-540-33182-4.
Sornette, D., Knopoff, L., Kagan, Y.Y. & Vanneste, C. (1996). Rank-ordering statistics of extreme events: Application to the distribution of large earthquakes. Journal of Geophysical Research: Solid Earth, 101(B6), 13883—13893. https://doi.org/10.1029/96JB00177.
Spada, M., Tormann, T., Wiemer, S., & Enescu, B. (2013). Generic dependence of the frequency‐size distribution of earthquakes on depth and its relation to the strength profile of the crust. Geophysical Research Letters, 40(4), 709—714. https://doi.org/10.1029/2012GL054198.
Stein, S., & Wysession, M. (2003). An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell Publishing, Oxford, 498 p.
Storchak, D.A., Harris, J., Brown, L., Lieser, K., Shumba, B., & Di Giacomo, D. (2020). Rebuild of the Bulletin of the International Seismological Centre (ISC) — part 2: 1980—2010. Geoscience Letters, 7, 18. https://doi.org/10.1186/s40562-020-00164-6.
Storchak, D.A., Harris, J., Brown, L., Lieser, K., Shumba, B., Verney, R., Di Giacomo, D., & Korger, E.I.M. (2017). Rebuild of the Bulletin of the International Seismological Centre (ISC), part 1: 1964—1979. Geoscience Letters, 4, 32. https://doi.org/10.1186/s40562-017-0098-z.
Stucchi, M., Rovida, A., Gomez Capera, A.A., Alexandre, P., Camelbeeck, T., Demircioglu, M.B., Gasperini, P., Kouskouna, V., Musson, R.M.W., Radulian, M., Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt, W., Makropoulos, K., Martinez Solares, J.M., Scotti, O., Živčić, M., Albini, O., Batllo, J., Papaioannou, C., Tatevossian, R., Locati, M., Meletti, C., Viganò, D., & Giardini, D. (2013). The SHARE European Earthquake Catalogue (SHEEC) 1000—1899. Journal of Seismology, 17, 523—544. https://doi.org/10.1007/s10950-012-9335-2.
Turcotte, D.L. (1997). Fractals and Chaos in Geology and Geophysics, ed. 2. Cambridge University Press, 416 p. https://doi.org/10.1017/CBO9781139174695.
Ullah, S., Bindi, D., Pilz, M., Danciu, L., Weatherill, G., Zuccolo, E,. Ischuk, A., Mikhailova, N.N., Abdrakhmatov, K., & Parolai, S. (2015). Probabilistic seismic hazard assessment for Central Asia. Annals of Geophysics, 58(1), 21 p. https://doi.org/10.4401/ag-6687.
U.S. Department of Energy. (2010). Kemper County IGCC Project, Final Environmental Impact Statement. U.S. Department of Energy, Washington D.C., 671 p. Retrieved from https://www.energy.gov/nepa/articles/eis-0409-final-environmental-impact-statement.
USGS (United States Geological Survey). (2009). Earthquake data of the Advanced National Seismic System (ANSS) Comprehensive Earthquake Catalog (ComCat). Retrieved from https://earthquake.usgs.gov/data/comcat/.
USGS (United States Geological Survey). (2021). 1811-1812 New Madrid, Missouri Earthquakes. Retrieved from https://www.usgs.gov/natural-hazards/earthquake-hazards/science/1811-1812-new-madrid-missouri-earthquakes?qt-science_center_objects=0#qt-science_center_objects (on 3rd of January 2024).
USGS (United States Geological Survey). (2023). Earthquake data of the Advanced National Seismic System (ANSS) Comprehensive Earthquake Catalog (ComCat). Retrieved from https://earthquake.usgs.gov/data/comcat/.
Urban, P., Lasocki, S., Blascheck, P., do Nascimento, A.F., Van Giang, N., & Kwiatek, G. (2016). Violations of Gutenberg—Richter Relation in Anthropogenic Seismicity. Pure and Applied Geophysics, 173, 1517—1537. https://doi.org/10.1007/s00024-015-1188-5.
Utsu, T. (2002a). Relationships between Magnitude Scales. International Geophysics, 81(A), 733—46. https://doi.org/10.1016/S0074-6142 (02)80247-9.
Utsu, T. (2002b). Statistical Features of Seismicity. International Geophysics, 81(A), 719—732. https://doi.org/10.1016/S0074-6142(02)80246-7.
Wang, K., Chen, Q.F., Sun, S.H., & Wang, A.D. (2006). Predicting the 1975 Haicheng Earthquake. Bulletin of the Seismological Society of America, 96(3), 757—795. https://doi.org/10. 1785/0120050191.
Wesnousky, S.G. (1994). The Gutenberg-Richter or characteristic earthquake distribution, which is it? Bulletin of the Seismological Society of America, 84(6), 1940—1959. https://doi.org/10.1785/BSSA0840061940.
Wesnousky, S.G., Scholz, C.H., Shimazaki, K., & Matsuda, T. (1984). Integration of geological and seismological data for the analysis of seismic hazard: A case study of Japan. Bulletin of the Seismological Society of America, 74(2), 687—708. https://doi.org/10.1785/BSSA0740020687.
Wu, S.C., Cornell, C.A., & Winterstein, S.R. (1995). A hybrid recurrence model and its implication on seismic hazard results. Bulletin of the Seismological Society of America, 85(1), 1—16. https://doi.org/10.1785/BSSA0850010001.
Zipf, G.K. (1949). Human behavior and the principle of least effort. Addison‐Wesley, Cambridge, 573 p.
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Gisela Domej
Ця робота ліцензується відповідно до Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Автори зберігають за собою авторські права на роботу і передають журналу право першої публікації разом з роботою, одночасно ліцензуючи її на умовах Creative Commons Attribution License, яка дозволяє іншим поширювати дану роботу з обов'язковим зазначенням авторства даної роботи і посиланням на оригінальну публікацію в цьому журналі .
2. Автори зберігають право укладати окремі, додаткові контрактні угоди на не ексклюзивне поширення версії роботи, опублікованої цим журналом (наприклад, розмістити її в університетському сховищі або опублікувати її в книзі), з посиланням на оригінальну публікацію в цьому журналі.
3. Авторам дозволяється розміщувати їх роботу в мережі Інтернет (наприклад, в університетському сховище або на їх персональному веб-сайті) до і під час процесу розгляду її даними журналом, так як це може привести до продуктивної обговоренню, а також до більшої кількості посилань на дану опубліковану роботу (Дивись The Effect of Open Access).