Gongola Basin Geoid Determination using Isostatic Models and Seismic Reflection Data and Geophysical Interpretation

Автор(и)

  • E.E. Epuh
  • J.B. Olaleye
  • O.G. Omogunloye

DOI:

https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91883

Ключові слова:

geoid undulation, Airy-Heiskanen model, Pratt-Hayford model, isostatic residual gravity anomaly, residual geoid undulation

Анотація

The application of Stokes’ formula to create geoid undulation requires no masses outside the geoid. Usually, a constant density of 2.67g / cm3 is used in the determination of the geoid which introduces error in the reduced gravity anomalies (Helmert’s condensation) and consequently the geoid. In this paper, isostatic models of Airy-Heiskanen and Pratt-Hayford were utilized in the determination of the geoid by considering the planar and spherical approximation models. The indirect effect of the topographic lateral density variation on the geoid was computed as additive correction for the improvement of the accuracy of the computed geoid. Additional density information deduced from seismic and well log data was considered for the variable density computation. The geopotential geoid undulations were computed from the EGM 2008 model. The residual geoid was obtained by subtracting the local isostatic geoid from the geopential geoid. Geoid and gravity admittance studies were also carried out to complement the results from the residual geoid.
The planar and spherical approximation results showed similar characteristics; but a change in magnitude in both models. Our results suggest that the effects of topographic lateral density variations in geoid determination are significant and should be considered in rift basins. The geophysical analysis of the geoid results show that the north-east domain has positive residual geoid which indicates the presence of high density intrusive igneous rocks, while the south-east has negative residual geoid which indicates the dominant presence of low density sedimentary rocks. The results also show that the radial distribution of the anomalous mass obtained using the geoid/residual geoid anomaly uniquely matched that obtained using the seismic reflection data which inferred the presence of hydrocarbon accumulation in the south east zone of the project area. The gravity and geoid admittance studies corroborated the residual geoid and seismic reflection results

Посилання

Abd-Elmotaal H., 1999. Comparison among different geoid solutions for the Egyptian south-western desert using FFT technique boll. Boll. Geofis. Teor. Appl. 40(3-4), 563—569

Abd-Elmotaal H., Kuhtreiber N., 2003. Geoid determination using adapted reference field, seismic Moho depths and variable density contrast. J. Geodesy 77, 77—85

Abubakar Y. I., Umegu M. N., Ojo S. B., 2010. Evolution of Gongola Basin Upper Benue Trough Northeastern Nigeria. Asian J. Earth Sci. 3, 62—72

Anderson E. G., 1979. The effect of topography on solution of Stokes' problem. Unisurv Report S-14, University of New South Wales, Kensington, Australia, 252 p

Benkhelil J., 1989. The Origin and evolution of the cretaceous Benue Trough (Nigeria). J. Afr. Earth Sci. 8, 251—282

Bird D. E., 2001. Shear Margins: Continent-Ocean transforms and fracture zone boundaries. The Leading Edge 20(2), 150—159

Bomford G., 1982. Geodesy. 5th edn. Oxford: University Press

Carter J. D., Barber W., Tait A. E., Jones J. P., 1963. The Geology of part of Adamawa, Bauchi and Borno Provinces in North Eastern Nigeria. Bull. Geol. Surv. Nigeria 30, 1—108

Claessens S. A., 2003. A synthetic Earth model. Analysis, implementation, validation and application. Delft University Press. 61 p

Cook F. A., Brown L. D., Oliver J. E., 1981. The Late Precambrian-Early. Paleozoic continental edge in the Appalachian Orogen. Am. J. Sci. 281, 993—1008

Coulon C., Vida P., Dupuy C., Baudin P., Pupoff M., Maluski H., Hermite D., 1996. The Mesozoic to Early Cenezoic Magmatism of the Benue Trough (Nigeria): Geochemical Evidence for the Involvement of the St. Helena plume. J. Petrol. 37, 1341—1358

Cratchley C. R., Jones G. P., 1965. An interpretation of the geology and gravity anomalies of the Benue Valley of Nigeria. Overseas geological survey. Geophysical Paper (1). 26 p

Crovetto C. B., Introcaso A., 2008. Alternative gravimetric methodology for isostatic analyses: an example of Bolivian Andes. Boletin del Instituto de Fisiografia y Geologia 78(1-2), 1—11

Engels J., Grafarend E. W., Sorcik P., 1995. The gravitational field of topographic isostatic masses and the hypothesis of mass compensation. Part I and II. Technical Report Department of Geodesy University, Stuttgart

Featherstone W. E., 1992. A GPS controlled gravimetric determination of the geoid of the British Isles. D. Phil Thesis, Oxford University

Featherstone W. E., Kirby J. F., Kearsley A. H. W., Gilliland J. R., Johnston G. M., Steed J., Forsberg R., Sideris M. G., 2001. The AUSgeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J. Geodesy 75, 313—330

Forsberg R., 1984. A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modeling. Department of Geodetic Science and Surveying. Report 355. The Ohio State University, Columbus

Forsberg R., Sideris M. G., 1993. Geoid computations by multi-band spherical FFT approach. Manuscr. Geod. 18, 82—90

Fraser D., Pagiatakis S. D., Goodacre A. K., 1998. In-situ rock density and terrain corrections to gravity observations. Proc. of the 12th Annual Symposium on Geographic Information Systems, Toronto 6—9 April 1998. P. 357—360

Heck B., 1992. Some remarks on the determination of the geoid in the framework of the internal geodetic boundary value problem. In: First continental workshop on the geoid in Europe. Research Institute of Geodesy, Topography and Cartography, Prague. P. 458—471

Heck B., Wild F., 2005. Topographic and isostatic reductions in Satellite Gravity Gradiometry based on a generalized condensation model. In: A Window on the Future of Geodesy, International Association of Geodesy Symposia. Vol. 128. Berlin, Heidelberg, New York: Springer, P. 294—299

Heiskanen W. A., Moritz H., 1967. Physical geodesy. San Francisco: W. H. Freeman. Institute of Physical Geodesy. 364 p

Heiskanen W. A., Vening Meinesz F. A., 1958. The Earth and its gravity field. New York: McGraw-Hill Book Company, Inc. 470 p

Huang J., Vanicek P., Pagiatakis S., Brink W., 2001. Effect of topographical mass density variation on gravity and geoid in the Canadian Rocky Mountains. J. Geodesy 74, 805—815

Hunegnaw A., 2001. The effect of lateral density variation on local geoid determination. Proc. IAG 2001 Scientific Assembly, Budapest, Hungary

Ilk K. H., Witte B., 2007. The Use of Topographic-Isostatic Mass Information in Geodetic Applications. Inaugural Lecture. Institute of Geodesy and Geoinformation, University of Bonn, Germany

Isioye O. A., Olaleye J. B., Youngu R., Aleem K. F., 2011. Modelling orthometric Heights from GPS-Leveling Observations an Global Gravity Model (EGM 2008) for Rivers State, Nigeria. Nigerian Journal of Surveying and Geoinformatics 3(2), 56—69

Kaban M. K., Schwintzer P., Reigber C. H., 2004. A new isostatic model of the lithosphere and gravity field. J. Geodesy 78, 368—385

Kiamehr R., 2006a. A strategy for determining the regional geoid in developing countries by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran. J. Geodyn. 79(10-11), 602—612

Kiamehr R., 2006b. The impact of lateral density variation model in the determination of precise gravimetric geoid in mountainous areas: a case study of Iran. Geophys. J. Int. 67, 521—527. doi:10.1111/j.1365-246X.2006.03143.x

Kiamehr R., Sjoberg L. E., 2005. Effect of the SRTM global DEM in the determination of a high-resolution geoid model of Iran. J. Geodyn. 79(9), 540—551

Kuhn M., 2000. Density modeling for geoid determination. GGG2000, July 31-August 4, 2000, Alberta , Canada

Kuhn M., 2003. Geoid Determination with density hypotheses from isostatic models and geological information. J. Geodesy 77, 50—65

Kuhtreiber N., 1998. Precise geoid determination using a density variation model. Phys. Chem. Earth 23(1), 59—63

Logatcher N. A., 1993. History of Geodynamics of Baikal Rift (East Siberia): A Review. Bulletin due center de la recherche exploration production 17, 353—370

Martinec Z., 1998. Boundary-value problems for gravimetric determination of a precise geoid. Lecture Notes in Earth Sciences, no. 73. Berlin, Heidelberg, New York: Springer

Martinec Z., 1993. Effect of lateral density variations of topographical masses in view of improving geoid model accuracy over Canada. Final rep. under DSS contract No. 23244-2-4356/01-SS, Geodetic Survey of Ottawa

Martinec Z., Vanicek P., 1994. The indirect effect of Stokes-Helmert's technique for a spherical approximation of the geoid. Manuscr. Geod. 18, 417—421

Martinec Z., Vanicek P., Mainville A., Veronneau M., 1995. The effect of lake water on geoidal height. Manuscr. Geod. 20, 199—203

Moritz H., 1965. The boundary value problem of physical geodesy. Publication of the Isostatic Institute of the IAG, no. 50, Helsinki

Moritz H., 1990. The figure of the Earth: theoretical geodesy and the Earth's interior. Karlsruche: Herbert Wichmann, 292 p

Nettleton l. L., 1971. Elementary gravity and magnetic for geologists and seismologists. Society of Exploration Geophysicists (SEG), Tulsa, Oklahoma, USA, 121 p

Nwilo P. C., Opaluwa Y. D., Adejare Q. A., Ayodele E. G., Ayeni A. M., 2009. Local Geoid Modeling of Lagos island Area using Geometrical Interpolation Method. Nigeria Journal of Surveying and Geoinformatics 2(2), 68—82

Obaje N. G., Attah D. O., Opeloye S. A., Moumouni A., 2006. Geochemical Evaluation of the Hydrocarbon Prospects of Sedimentary Basins in Northern Nigeria. Geochem. J. 40, 227—243

Okereke C. S., 1988. Contrasting modes of rifting: The Benue Trough and Cameroon volcanic lines, West Africa. Tectonics 7(4), 775—784

Okiwelu A., Okwueze C., Okereke C., Osazuwa I., 2010. Crustal Structure and Tectonics of the Calabar Flank, West Africa, based on Residual Gravity Interpretation. Eur. J. Soc. Sci. Res. 42(2), 195—203

Okiwelu A. A., Okwueze E. E., Ude I. O., 2011. Determination of Nigerian Geoidal Undulation from Spherical Harmonic Analysis. Appl. Phys. Res. 3(1), 8—14

Osazuwa I. B., Adeniyi O. O., Ojo J. B., 1992. A gravity study of the older granites suite in the Zaria Area of Kaduna State. Nigerian Journal of Mining and Geology 28(2), 231—236

Pagiatakis S. D., Armenakis C., 1998. Gravimetric geoid modelling with GPS. Int. Geoid Serv. Bull. 8, 105—112

Pagiatakis S. D., Fraser D., McEwen K., Goodacre A. K., Veronneau M., 1999. Topographic mass density and gravimetric geoid modeling. Boll. Geofis. Teor. Appl. 40, 189—194

Pratt J. H., 1855. On the attraction of the Himalaya Mountains, and of the elevated regions beyond them upon the plumb-line in India. Phil. Trans. Roy. Soc. London 145, 53—100

Rummel R., Rapp R. H., Sunkel H., Tscherning C. C., 1988. Comparisons of global topographic-isostatic models to the Earth's observed gravity field. Reports of the Department of Geodetic Science and Surveying No. 388, Ohio State University, Columbus, Ohio

Shemang E. M., Ajayi C. O., Jacoby W. R., 2001. A magnetic failed rift beneath the Gongola arm of the Upper Benue Trough, Nigeria? J. Geodyn. 32(3), 355—371

Sideris M., 1996. International tests of the new GSFC/DMA Geopotential Models. Gravity, Geoid and Marine Geodesy. International Association of Geodesy Symposia (Tokyo) 117, 478—485

Sjöberg L. E., 2004. The effect on the geoid of lateral topographic density variations. J. Geodesy 78, 34—39

Sjöberg L. E., 1998a. The exterior Airy/Heiskanen topographic-isostatic gravity potential, anomaly and the effect of analytical continuation in Stokes' formula. J. Geodesy 72, 654—662

Sjöberg L. E., 2001. Topographic and atmospheric corrections of the gravimetric geoid determination with special emphasis of the effects of degrees zero and one. J. Geodesy 75, 283—290

Sjöberg L. E., 1998b. On the Pratt and Airy models of isostatic geoid undulations. J. Geodyn. 26(1), 137­—147

Sun W., 2002. A formula for gravimetric terrain corrections using powers of topographic height. J. Geodesy 76(8), 399—406

Sun W., Murata I., 1994. Divergence of high-degree harmonic solutions of a rotating elliptical Earth. Geophys. J. Int. 118, 269—271

Sunkel H., 1985. An isostatic Earth model. Rep. 367, Department of Geodetic Science and Surveying, The Ohio State University, Columbus

Tsoulis D., 2001. A comparison between the Airy-Heiskanen and the Pratt-Hayford isostatic models for the computation of potential harmonic coefficients. J. Geodesy 74(9), 637—643

Tsoulis D., Tziavos I. N., 2003. A comparison of some existing methods for the computation of terrain corrections in local gravity field modelling. Gravity and Geoid 2002. Ziti-Publishing Thessaloniki, P. 156—16

Tziavos I. N., Featherstone W. E., 2000. First results of using digital density data in gravimetric geoids computation in Australia. IAG Symposia, GGG2000. Vol. 123. Berlin, Heidelberg: Springer Verlag, P. 335—340

Tziavos I. N., Sideris M. G., Sunkel H., 1996. The effect of surface density variation on terrain modeling- a case study in Austria. Proc. EGS Society General Assembly. The Hague, The Netherlands, May, 1996. Report of the Finnish Geodetic Institute. P. 99—110

Turcotte D. L., Schubert G., 1982. Geodynamics. Applications of continuum physics to geological problems. New York: John Wiley & Sons Ed., 450 p

Ugbor D. O., Okeke F. N., 2010. Geophysical investigation in the lower Benue Trough of Nigeria using gravity method. Int. J. Phys. Sci. 5(11), 1757—1769

Vanicek P., Huang J., Brink W., Novak P., 1998. Preliminary investigation of the effect of topographic mass density variations on gravity and geoid in the Canadian Rocky Mountains. Progress report on contract “Theoretical and practical refinements of precise geoid determination methods”. Geodetic Survey Division, Natural Resource Canada, Ottawa

Vanicek P., Kleusberg A., 1987. The Canadian geoid-stokesian approach. Manuscr. Geod. 12, 86—98

Vanicek P., Martinec Z., 1994. The Stokes-Helmert scheme for the evaluation of precise geoid. Manuscr. Geod. 19, 119—128

Vanicek P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P., ter Horst B., 1996. Downward continuation of Helmert's gravity. J Geodesy 71, 21—34

Wichiencharoen C., 1982. The direct effects on the computation of geoid undulation. Rep. 336, Department of Geodetic Science and Surveying, The Ohio State University, Columbus

Wild F., Heck B., 2004a. A comparison of different isostatic models applied to Satellite Gravity Gra-diometry. Gravity, Geoid and Space Missions. International Association of Geodesy Symposia. Vol. 129. Berlin, Heidelberg, New York: Springer, P. 230—235

Wild F., Heck B., 2004b. Effects of topographic and isostatic masses in Satellite Gravity Gradiometry. The Geoid and Oceanography. Proceedings of the Second International GOCE User Workshop Frascati/Italy, March 8-10, 2004. CD-ROM

##submission.downloads##

Опубліковано

2016-12-01

Як цитувати

Epuh, E., Olaleye, J., & Omogunloye, O. (2016). Gongola Basin Geoid Determination using Isostatic Models and Seismic Reflection Data and Geophysical Interpretation. Геофізичний журнал, 38(6), 137–151. https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91883

Номер

Розділ

Статті