On mim-spaces
DOI:
https://doi.org/10.15673/2072-9812.2/2015.51574Schlagworte:
idempotent measure, probability measure, mim-spaceAbstract
The notion of idempotent measure is a counterpart of that of probability measure in the idempotent mathematics. In this note, we consider a metric on the set of compact, idempotent measure spaces (mim-spaces) and prove that this space is separable and non-complete.Literaturhinweise
L. Bazylevych, D. Repovs, M. Zarichnyi. Spaces of idempotent measures of compact metric spaces. Topol. Appl. 157 (2010), 136--144.
M. Gromov, Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits). Publications mathematiques de l’I.H.E.S., tome 53 (1981), P. 53--78.
V. P. Maslov, S. N. Samborskii (eds.), Idempotent analysis, Adv. Soviet Math., 13, Amer. Math. Soc., Providence, RI, 1992.
N. Mazurenko, M. Zarichnyi, Idempotent ultrametric fractals. - Visnyk of the Lviv Univ. Series Mech. Math. 2014. Issue 79. P. 111--118.
K.-Th. Sturm. On the Geometry of Metric Measure Spaces. Acta Mathematica, 2006, Volume 196, Issue 1, P. 65--131.
M. Zarichnyi. Spaces and maps of idempotent measures. Izvestiya: Mathematics, 2010, 74:3, 481–-499.