On mim-spaces

Auteurs-es

  • Viktoriya Brydun Drohobych State Pedagogical University, Ukraine
  • Aleksandr Savchenko Kherson State Agrarian University, Ukraine
  • Mykhailo Zarichnyi Lviv National University, Ukraine

DOI :

https://doi.org/10.15673/2072-9812.2/2015.51574

Mots-clés :

idempotent measure, probability measure, mim-space

Résumé

The notion of idempotent measure is a counterpart of that of probability measure in the idempotent mathematics. In this note, we consider a metric on the set of compact, idempotent measure spaces (mim-spaces) and prove that this space is separable and non-complete.

Bibliographies de l'auteur-e

Viktoriya Brydun, Drohobych State Pedagogical University

Associate professor

Aleksandr Savchenko, Kherson State Agrarian University

Department of Economics, Dean

Mykhailo Zarichnyi, Lviv National University

Department of Mechanics and Mathematics, Dean

Références

L. Bazylevych, D. Repovs, M. Zarichnyi. Spaces of idempotent measures of compact metric spaces. Topol. Appl. 157 (2010), 136--144.

M. Gromov, Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits). Publications mathematiques de l’I.H.E.S., tome 53 (1981), P. 53--78.

V. P. Maslov, S. N. Samborskii (eds.), Idempotent analysis, Adv. Soviet Math., 13, Amer. Math. Soc., Providence, RI, 1992.

N. Mazurenko, M. Zarichnyi, Idempotent ultrametric fractals. - Visnyk of the Lviv Univ. Series Mech. Math. 2014. Issue 79. P. 111--118.

K.-Th. Sturm. On the Geometry of Metric Measure Spaces. Acta Mathematica, 2006, Volume 196, Issue 1, P. 65--131.

M. Zarichnyi. Spaces and maps of idempotent measures. Izvestiya: Mathematics, 2010, 74:3, 481–-499.

Téléchargements

Publié-e

2015-10-15