New chaos-geometric and information technology analysis of chaotic generation regime in a single-mode laser system with absorbing cell

Autor/innen

  • Georgy Prepelitsa Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15673/2072-9812.2/2015.51591

Schlagworte:

Geometry of chaos, Non-linear analysis, laser system

Abstract

Here we present the results of application of a new chaos-geometric approach and some information technology algorithms to analysis of chaotic generation regime in a single-mode laser system with absorbing cell. Earlier developed chaos-geometric approach to  modelling and analysis of nonlinear processes dynamics of the complex systems combines together application of the advanced mutual information approach, correlation integral analysis, Lyapunov exponent's analysis etc.

Autor/innen-Biografie

Georgy Prepelitsa, Odessa State Environmental University

Department of information technologies, Head of department, professor

Literaturhinweise

Glushkov A.V., Kuzakon' V.M., Khetselius O.Yu., Prepelitsa G.P. and Svinarenko A.A., Geometry of Chaos: Theoretical basis's of a consistent combined approach to treating chaotic dynamical systems and their parameters determination// Proc. Int. Geom. Centre.-2013.-Vol.6.-N1.-P6-12.

Glushkov A.V., Khetselius O.Yu., Florko T.A., Prepelitsa G.P., Chaos-Geometric approach to analysis of quantum-generator systems// Proc. Int. Geom. Centre.- 2014.-Vol.7,N4.-P.77-82.

Bunyakova Yu.Ya., Glushkov A.V.,Fedchuk A.P., Serbov N.G., Svinarenko A.A., Tsenenko I.A., Sensing non-linear chaotic features in dynamics of system of couled autogenerators: standard multifractal analysis// Sensor Electr. and Microsyst. Techn.-2007.-N1.-P.14-17.

Prepelitsa G.P., Chaos-Geometric approach to analysis of chaotic attractor dynamics for the one-ring fibre laser// Proc. Int. Geom. Centre.- 2017.-Vol.8,N1.-P.72--76.

Glushkov A.V., Svinarenko A.A., Buyadzhi V.V., Zaichko P.A., Ternovsky V.B., Chaos-geometric attractor and quantum neural networks approach to simulation chaotic evolutionary dynamics during perception process// Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Advances in Computer Engineering (Gdansk,EU, World Sci.).-2014.-Vol.21.-P.143--150.

Glushkov A.V., Prepelitsa G.P., Lepikh Ya.I., Buyadzhi V.V., Ternovsky V.B., Zaichko P.A., Chaotic dynamics of non-linear processes in atomic and molecular systems in electromagnetic field and semiconductor and fiber laser devices: new approaches, uniformity and charm of chaos// Sensor Electronics and Microsystems Techn.-2014.-Vol.11,N4.-P.43--57.

Glushkov A.V., Khetselius O.Yu., Bunyakova Yu.Ya., Prepelitsa G.P., Solyanikova E.P., Serga E.N., Non-linear prediction method in short-range forecast of atmospheric pollutants: low-dimensional chaos// Dynamical Systems -- Theory and Applications. -- Lodz: Lodz Univ. Press (Poland). --2011.- LIF111 (6p.).

Glushkov A.V., Bunyakova Yu.Ya., Zaichko P.A., Geometry of Chaos: Consistent combined approach to treating chaotic dynamics atmospheric pollutants and its forecasting// Proc. of Int. Geometry Center.-2013.-Vol.6,N3.-P.6-14.

Feng C., Yu-Ling F., Zhi-Hai Y., Jian F., Yuan-Chao S., Yu-Zhu Z.: Experimental investigation on chaos generation in erbium-doped fiber single-ring lasers//Chin. Phys. B.-2013.-Vol. 21.-P.100504.

Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase-space reconstruction using a geometrical construction//Phys Rev A.-1992.-Vol.45.-P.3403--3411.

Packard N., Crutchfield J., Farmer J., Shaw R., Geometry from a time series//Phys Rev Lett.-1988.-Vol.45.-P.712--716.

Fraser A., Swinney H., Independent coordinates for strange attractors from mutual information// Phys Rev A.-1986.-Vol.33.-P.1134--1140.

Grassberger P., Procaccia I., Measuring the strangeness of strange attractors//Physica D.-1983.-Vol.9.-P.189--208.

Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg New York, pp 366--381

Mane R (1981) On the dimensions of the compact invariant sets of certain non-linear maps. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg N.-Y., p. 230--242

Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series//Phys Rev.Lett.-1995.-Vol.55.-P.1082--1085

Downloads

Veröffentlicht

2015-10-15