Новий хаос-геометричний і інформаційний підхід до аналізу режиму хаотичної генерації в одно-модової лазерній системі з поглинаючою осередком

Автор(и)

  • Georgy Prepelitsa Одеський державний екологічний університет, Україна

DOI:

https://doi.org/10.15673/2072-9812.2/2015.51591

Ключові слова:

Геометрія хаосу, Нелінійний аналіз, Лазерна система

Анотація

У роботі представлені результати  застосування до аналізу режиму хаотичної генерації в одномодовому лазері з поглинаючим осередком нового хаос-геометричного та інформаційного підходу. Раніше розроблений нами хаос-геометричний підхід до моделювання та аналізу нелінійних процесів динаміки складних систем  поєднує в собі разом застосування вдосконалених версій методу взаємної інформації, методу кореляційного інтеграла, аналізу показників Ляпунова та ін.

Біографія автора

Georgy Prepelitsa, Одеський державний екологічний університет

Кафедра інформаційних технологій , завідувач кафедри, професор

Посилання

Glushkov A.V., Kuzakon' V.M., Khetselius O.Yu., Prepelitsa G.P. and Svinarenko A.A., Geometry of Chaos: Theoretical basis's of a consistent combined approach to treating chaotic dynamical systems and their parameters determination// Proc. Int. Geom. Centre.-2013.-Vol.6.-N1.-P6-12.

Glushkov A.V., Khetselius O.Yu., Florko T.A., Prepelitsa G.P., Chaos-Geometric approach to analysis of quantum-generator systems// Proc. Int. Geom. Centre.- 2014.-Vol.7,N4.-P.77-82.

Bunyakova Yu.Ya., Glushkov A.V.,Fedchuk A.P., Serbov N.G., Svinarenko A.A., Tsenenko I.A., Sensing non-linear chaotic features in dynamics of system of couled autogenerators: standard multifractal analysis// Sensor Electr. and Microsyst. Techn.-2007.-N1.-P.14-17.

Prepelitsa G.P., Chaos-Geometric approach to analysis of chaotic attractor dynamics for the one-ring fibre laser// Proc. Int. Geom. Centre.- 2017.-Vol.8,N1.-P.72--76.

Glushkov A.V., Svinarenko A.A., Buyadzhi V.V., Zaichko P.A., Ternovsky V.B., Chaos-geometric attractor and quantum neural networks approach to simulation chaotic evolutionary dynamics during perception process// Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Advances in Computer Engineering (Gdansk,EU, World Sci.).-2014.-Vol.21.-P.143--150.

Glushkov A.V., Prepelitsa G.P., Lepikh Ya.I., Buyadzhi V.V., Ternovsky V.B., Zaichko P.A., Chaotic dynamics of non-linear processes in atomic and molecular systems in electromagnetic field and semiconductor and fiber laser devices: new approaches, uniformity and charm of chaos// Sensor Electronics and Microsystems Techn.-2014.-Vol.11,N4.-P.43--57.

Glushkov A.V., Khetselius O.Yu., Bunyakova Yu.Ya., Prepelitsa G.P., Solyanikova E.P., Serga E.N., Non-linear prediction method in short-range forecast of atmospheric pollutants: low-dimensional chaos// Dynamical Systems -- Theory and Applications. -- Lodz: Lodz Univ. Press (Poland). --2011.- LIF111 (6p.).

Glushkov A.V., Bunyakova Yu.Ya., Zaichko P.A., Geometry of Chaos: Consistent combined approach to treating chaotic dynamics atmospheric pollutants and its forecasting// Proc. of Int. Geometry Center.-2013.-Vol.6,N3.-P.6-14.

Feng C., Yu-Ling F., Zhi-Hai Y., Jian F., Yuan-Chao S., Yu-Zhu Z.: Experimental investigation on chaos generation in erbium-doped fiber single-ring lasers//Chin. Phys. B.-2013.-Vol. 21.-P.100504.

Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase-space reconstruction using a geometrical construction//Phys Rev A.-1992.-Vol.45.-P.3403--3411.

Packard N., Crutchfield J., Farmer J., Shaw R., Geometry from a time series//Phys Rev Lett.-1988.-Vol.45.-P.712--716.

Fraser A., Swinney H., Independent coordinates for strange attractors from mutual information// Phys Rev A.-1986.-Vol.33.-P.1134--1140.

Grassberger P., Procaccia I., Measuring the strangeness of strange attractors//Physica D.-1983.-Vol.9.-P.189--208.

Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg New York, pp 366--381

Mane R (1981) On the dimensions of the compact invariant sets of certain non-linear maps. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg N.-Y., p. 230--242

Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series//Phys Rev.Lett.-1995.-Vol.55.-P.1082--1085

##submission.downloads##

Опубліковано

2015-10-15