Нелокальная анизотропная оболочечная модель линейных колебаний многостенных углеродных нанотрубок
Ключевые слова:
нанотрубка, оболочечная модель Сандерса-Коитера, силы Ван-дер-Ваальса, нелокальная упругостьАннотация
Рассматривается многостенная шарнирно-опертая углеродистая нанотрубка. Ее колебания будут изучаться в цилиндрической системе координат. Упругие постоянные в законе Гука зависят от диаметра стенки углеродистой нанотрубки, поэтому каждая стенка имеет свои упругие постоянные. Колебания стенок нанотрубок описываются оболочечной теорией Сандерса-Коитера. Для вывода уравнений в частных производных, описывающих автоколебания, применяется вариационный подход. Уравнения колебаний в частных производных выводятся относительно трех проекций перемещений. В модели учитываются силы Ван-дер-Ваальса между стенками нанотрубки. Три проекции перемещений раскладываются по базисным функциям. Выбрать базисные функции, удовлетворяющие одновременно геометрическим и естественным граничным условиям, не удалось. Поэтому выбираются базисные функции, удовлетворяющие только геометрическим граничным условиям. Для получения линейной динамической системы с конечным числом степеней свободы применяется метод взвешенных невязок. Для вывода основных соотношений метода взвешенных невязок применяются методы вариационного исчисления. Проведен анализ собственных частот колебаний одностенных углеродистых нанотрубок в зависимости от числа волн в окружном направлении. При числе волн в окружном направлении от 2 до 4 наблюдаются минимальные собственные частоты колебаний нанотрубок. Эти числа меньше, чем для собственных частот колебаний машиностроительных оболочек. Исследовались трехстенные анизотропные модели нанотрубок. В собственных формах наблюдается взаимодействие между базисными функциями с разным числом волн в продольном направлении. Этого явления не наблюдалось в изотропной модели нанотрубки. Появление таких колебаний является следствием анизотропии конструкции.Библиографические ссылки
Gibson, R. F., Ayorinde, E. O., & Wen, Y.-F. (2007). Vibrations of carbon nanotubes and their composites: A review. Composites Sci. and Technology, vol. 67, iss. 1, pp. 1–28. https://doi.org/10.1016/j.compscitech.2006.03.031.
Sirtori, C. (2002). Applied physics: Bridge for the terahertz gap. Nature, no. 417, pp. 132–133. https://doi.org/10.1038/417132b.
Jeon, T. & Kim, K. (2002). Terahertz conductivity of anisotropic single walled carbon nanotube films. Appl. Physics Letters, no. 80, pp. 3403–3405. https://doi.org/10.1063/1.1476713.
Yoon, J., Ru, C. Q., & Mioduchowski, A. (2003). Sound wave propagation in multiwall carbon nanotubes. J. Appl. Physics, no. 93, pp. 4801–4806. https://doi.org/10.1063/1.1559932.
Iijima, S., Brabec, C., Maiti, A., & Bernholc, J. (1996). Structural flexibility of carbon nanotubes. J. Chemical Physics, no. 104, pp. 2089–2092. https://doi.org/10.1063/1.470966.
Yakobson, B. I., Campbell, M. P., Brabec, C. J., & Bernholc, J. (1997). High strain rate fracture and C-chain unraveling in carbon nanotubes. Computer Material Sci., vol. 8, iss. 4, pp. 241–248. https://doi.org/10.1016/S0927-0256(97)00047-5.
Wang, C. Y. & Zhang, L. C. (2008). An elastic shell model for characterizing single-walled carbon nanotubes. Nanotechnology, no. 19. 195704. https://doi.org/10.1088/0957-4484/19/19/195704.
Wang, Q. & Varadan, V. K. (2007). Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes. Smart Material Structure, no. 16, pp. 178–190. https://doi.org/10.1088/0964-1726/16/1/022.
Fu, Y. M., Hong, J. W., & Wang, X. Q. (2006). Analysis of nonlinear vibration for embedded carbon nanotubes. J. Sound and Vibration, vol. 296, iss. 4–5, pp. 746–756. https://doi.org/10.1016/j.jsv.2006.02.024.
Ansari, R. & Hemmatnezhad, M. (2001). Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach. Mathematical and Computer Modeling, vol. 53, iss. 5–6, pp. 927–938. https://doi.org/10.1016/j.mcm.2010.10.029.
Ansari, R. & Hemmatnezhad, M. (2012). Nonlinear finite element analysis for vibrations of double-walled carbon nanotubes. Nonlinear Dynamics, no. 67, pp. 373–383. https://doi.org/10.1007/s11071-011-9985-6.
Hajnayeb, A. & Khadem, S. E. (2012). Analysis of nonlinear vibrations of double-walled carbon nanotubes conveying fluid. J. Sound and Vibration, vol. 331, iss. 10, pp. 2443–2456. https://doi.org/10.1016/j.jsv.2012.01.008.
Avramov, K. V. (2018). Nonlinear vibrations characteristics of single-walled carbon nanotubes via nonlocal elasticity. Intern. J. Nonlinear Mech., vol. 107, pp. 149–160. https://doi.org/10.1016/j.ijnonlinmec.2018.08.017.
Fazelzadeh, S. A. & Ghavanloo, E. (2012). Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Composite Structures, vol. 94, iss. 3, pp. 1016–1022. https://doi.org/10.1016/j.compstruct.2011.10.014.
Ghavanloo, E. & Fazelzadeh, S. A. (2012). Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect. Appl. Math. Modelling, vol. 36, iss. 10, pp. 4988–5000. https://doi.org/10.1016/j.apm.2011.12.036.
Chang, T. (2010). A molecular based anisotropic shell model for single-walled carbon nanotubes. J. Mech. and Physics Solids, vol. 58, iss. 9, pp. 1422–1433. https://doi.org/10.1016/j.jmps.2010.05.004.
Chang, T., Geng, J., & Guo, X. (2006). Prediction of chirality- and size-dependent elastic properties of single-walled carbon nanotubes via a molecular mechanics model. Proc. Royal Society A, vol. 462, iss. 2072, pp. 2523–2540. https://doi.org/10.1098/rspa.2006.1682.
He, X. Q., Kitipornchai, S., Wang, C. M., Xiang, Y., & Zhou, Q. (2010). A nonlinear Van Der Waals force model for multiwalled carbon nanotubes modeled by a nested system of cylindrical shells. ASME J. Appl. Mech., vol.77, iss. 6, 061006 (6 p.). https://doi.org/10.1115/1.4001859.
Washizu, K. (1975). Variational methods in elasticity and plasticity.Oxford,United Kingdom: Pergamon Press, 420 p.
Zienkiewicz, O. (1983). Finite elements and approximation.New York: John Wiley & Sons, 350 p.
He, X. Q., Kitipornchai, S., & Liew, K. M. (2005). Buckling analysis of multi-walled carbon nanotubes: A continuum model accounting for Van der Waals interaction. J Mech. Phys. Solids, vol. 53, iss. 2, pp. 303–326. https://doi.org/10.1016/j.jmps.2004.08.003.
Strozzi, M. & Pellicano, F. (2017). Linear vibrations of triple-walled carbon nanotubes. Mathematics and Mechanics of Solids, vol. 23, iss. 11, pp. 1456–1481. https://doi.org/10.1177/1081286517727331.
Liew, K. M., He, X. Q., & Wong, C. H. (2004). On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation. Acta Materialia, vol. 52, iss. 9, pp. 2521–2527. https://doi.org/10.1016/j.actamat.2004.01.043.
Lambin, Ph., Meunier, V., & Rubio, A. (2000). Electronic structure of polychiral carbon nanotubes. Physical review B, vol. 62, iss. 8, pp. 5129–5135. https://doi.org/10.1103/PhysRevB.62.5129.
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2020 Kostiantyn V. Avramov, Balzhan N. Kabylbekova, Kazira K. Seitkazenova, Darkhan S. Myrzaliyev, Vladimir N. Pecherskiy
Это произведение доступно по лицензии Creative Commons «Attribution-NoDerivatives» («Атрибуция — Без производных произведений») 4.0 Всемирная.
Авторы, публикующиеся в этом журнале, соглашаются со следующими условиями:
- Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензионного договора (соглашения).
- Авторы имеют право заключать самостоятельно дополнительные договора (соглашения) о неэксклюзивном распространении работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале.
- Политика журнала позволяет размещение авторами в сети Интернет (например, в хранилищах учреждения или на персональных веб-сайтах) рукописи работы, как до подачи этой рукописи в редакцию, так и во время ее редакционной обработки, поскольку это способствует возникновению продуктивной научной дискуссии и позитивно отражается на оперативности и динамике цитирования опубликованной работы (см. The Effect of Open Access).