Solving the problem of optimal packing of homothetic ellipsoids into a container of minimal volume

Authors

  • О. М. Хлуд Institute of Mechanical Engineering Problems. AN Podgorny NAS, Ukraine

Keywords:

optimal packing, homothetic ellipsoids, phi-functions, starting point, non-overlapping, containment, nonlinear optimization, iterative procedure, LOFRT procedure

Abstract

The paper studies the packing problem of homothetic the same oriented ellipsoids into a container of minimal volume. The container can be a rectangular parallelepiped or an ellipsoid. We formulate the model in the form of a nonlinear programming problem. To constract the non-overlapping and containment constraints using of phi-function technique. We propose the efficient algorithm, which employes a homothetic transformation of ellipsoids and the optimization procedure ­  Local Optimization with Feasible Region Transformation (LOFRT), which allow us to reduce considerably the dimension of the problem and computational time. Our algorithm also involves generating a number of random starting points. We choose the best local minimum as the solution of the problem. Our model can be realized by the current state-of-the art local or global solvers. A several computational results are provided

References

1. Wright S. J. Packing Ellipsoids with Overlap. SIAM Review, 55(4):671-706. 2013.

2. Kallrath J. Packing ellipsoids into volume-minimizing rectangular boxes. Journal of Global Optimization. DOI:10.1007/s10898-015-0348-6.

3. Pankratov A., Romanova T., Khlud O. Quasi-phi-functions in packing of ellipsoids. Radioelectronics & Informatics, 68:37–42. 2015.

4. Lubachevsky B. D., Stillinger F. H. Geometric properties of random disk packings. Journal of Statistical Physics, 60 (5–6):561-583. 1990.

5. Bennell J. A., Oliveira J. F. A tutorial in irregular shape packing problem.Journal of the Operational Research Society. 2009. 60:93–105.

6. Chernov N., Stoyan Yu., Romanova T. Mathematical model and efficient algorithms for object packing problem. Computational Geometry: Theory and Applications. 2010. Vol. 43, № 5. P. 533-553.

7. Stetsuk P. I., Romanova T. E., Subota I. O. NLP-zadacha upakovky homotetychnyh elipsiv u priamokutnyi konteiner. Teoriya optymalnyh rishen: zb. nauk. pr. – Kiev: In. kibernetyky im. V. M. Hkushkova NAN Ukrainy. 2014. S. 139-146.

8. Stoyan Yu. G. A mathematical model and a solution method for the problem of placing various-sized circles into a strip / Yu. G. Stoyan, G. N. Yaskov. European Journal of Operational Research. 2004. Vol. 156. P. 590–600.

9. Stoyan Y., Pankratov A., Romanova T. Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization. 2015. DOI:10.1007/s10898-015-0331-2.

Published

2016-06-16

Issue

Section

Applied mathematics