Модуль зсуву волокнистого композиту з транстропною в’язкопружною матрицею та транстропним пружним волокном
Ключові слова:
композит, ефективний модуль зсуву, в’язкопружність, транстропний матеріалАнотація
Під час розв’язання задач механіки деформівного твердого тіла неоднорідний композиційний матеріал моделюється однорідним з осередненими механічними властивостями – ефективними характеристиками. Метою цієї статті є розробка методики визначення ефективного модуля зсуву для в’язкопружного волокнистого композита з транстропними матрицею та волокном. Їхні площини ізотропії співпадають та перпендикулярні осі волокна. Ефективний модуль зсуву визначається як функція механічних властивостей матриці та волокна і об’ємного вмісту кожного з них в композиті. Розглядається односпрямований композиційний матеріал з гексагональною схемою укладки волокон та з елементарною коміркою, що складається з в’язкопружної матриці та пружного волокна. Геометричною моделлю композита є комбінація двох коаксіальних нескінченних циліндрів – порожнистого, що моделює матрицю, та вставленого у нього суцільного, що моделює волокно. Об’єм гексагональної комірки апроксимується об’ємом циліндра. При цьому радіус циліндра обирається так, щоб об’ємний вміст волокна в гексагональній комірці співпадав зі значенням цієї характеристики для циліндричної комірки. Для опису в’язкопружних властивостей композита використовуються співвідношення спадкової теорії Больцмана-Вольтерра. Модуль зсуву визначається як інтегральний оператор з різницевим ядром. Розглянуто дві крайові задачі: про повздовжній зсув транстропного в’язкопружного суцільного циліндра, що моделює композит, та про спільний повздовжній зсув порожнистого та суцільного циліндрів, що моделюють відповідно матеріал матриці та матеріал волокна. Передбачається неперервність переміщень та дотичних напружень на поверхні контакту матриці та волокна. На зовнішній поверхні циліндричної комірки прикладається дотичне гармонічне навантаження. Для розв’язання таких задач використовується перетворення Лапласа. Як умова узгодження застосовується рівність переміщень на зовнішній поверхні циліндра для обох задач. Використання запропонованої методики дозволяє визначати характеристики інтегрального оператора, що описує модуль зсуву для в’язкопружного композиційного матеріалу. Знаходяться миттєвий модуль зсуву та параметри ядра релаксації як функції відомих механічних характеристик матриці та волокна. Як приклад визначені характеристики модуля зсуву для композиційного матеріалу, що складається з гумової матриці та поліамідного волокна.Посилання
Klasztorny, M., Konderla, P., & Piekarski, R. (2009). An Exact Stiffness Theory of Unidirectional xFRP Composites. Mech. Сomposite Materials, vol. 45, no. 1, pp. 77–104.
Grebenyuk, S. N. (2012). Opredeleniye modulya sdviga kompozitsionnogo materiala s transtropnymi matritsey i voloknom [Determination of the shear modulus of composite material with transtropic matrix and fiber]. Metody Rozviazuvannia Prykladnykh Zadach Mekhaniky Deformivnoho Tverdoho Tila: zb. nauk. prats− Methods of Solving Applied Problems of a Deformed Solid: collected scientific papers . Dnipropetrovsk: Nauka i osvita, iss. 13, pp. 92–98 [in Russian].
Grebenyuk, S .N. (2004). The shear modulus of a composite material with a transversely isotropic matrix and a fibre. J. Appl. Math. and Mech., vol. 78, no. 2, pp. 270–276.
Plume, E. Z. (1992). Sravnitelnyy analiz polzuchesti odnonapravlennykh kompozitov, armirovannykh voloknami razlichnogo tipa [Comparative analysis of creep of unidirectional composites reinforced with fibers of various types]. Mekhanika Kompozit. Materialov − Mechanics of Composite Materials, no. 4, pp. 557–566 [in Russian].
Maksimov, R. D., & Plume, E. Z. (1984). Creep of unidirectionally reinforced polymer composites. Mech. Composite Materials, no. 20, pp. 149–157.
Kaminskiy, A. A., & Selivanov, M. F. (2005). Ob odnom metode opredeleniya kharakteristik vyazkouprugogo deformirovaniya kompozitov [On a method for determining the characteristics of viscoelastic deformation of composites]. Prikl. mekhanika − International Applied Mechanics, vol. 41, no. 5, pp. 9–21 [in Russian].
Boughammoura, A. (2013). Homogenization of a highly heterogeneous elastic-viscoelastic composite materials. Mediterranean J. Math., vol. 10, iss. 4, pp. 1793–1812.
Zhang, Y., Ellyin, F., & Zhang, Y. (2005). Nonlinear viscoelastic micromechanical analysis of fibre-reinforced polymer laminates with damage evolution. Intern. J. Solids and Structures, vol. 42, iss. 2, pp. 591–604.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2018 Sergey N. Grebenyuk, Mikhail I. Klimenko
Ця робота ліцензується відповідно до Creative Commons Attribution-NoDerivatives 4.0 International License.
Автори, які публікуються в цьому журналі, погоджуються з наступними умовами:
- Автори залишають за собою право на авторство своєї роботи і передають журналу право першої публікації цієї роботи на умовах ліцензійного договору (угоди).
- Автори мають право самостійно укладати додаткові договори (угоди) з неексклюзивного поширення роботи в тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати в складі монографії), за умови збереження посилання на першу публікацію роботи в цьому журналі.
- Політика журналу дозволяє розміщення авторами в мережі Інтернет (наприклад, у сховищах установи або на персональних веб-сайтах) рукопису роботи як до подачі цього рукопису в редакцію, так і під час її редакційної обробки, оскільки це сприяє виникненню продуктивної наукової дискусії і позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).