Дослідження напружено-деформованого стану шару з повздовжньою циліндричною товстостінною трубою та заданими на межах шару переміщеннями

Автор(и)

  • Vitaliy Yu. Miroshnikov Харківський національний університет будівництва та архітектури (61002, Україна, м. Харків, вул. Сумська, 40), Україна https://orcid.org/0000-0002-9491-0181

Ключові слова:

товстостінна труба в шарі, рівняння Ламе, узагальнений метод Фур’є

Анотація

Запропоновано аналітико-числовий підхід до розв’язання просторової задачі теорії пружності для шару з круговою циліндричною трубою. Циліндрична порожня товстостінна труба розташована всередині шару паралельно його поверхням та жорстко з ним скріплена. Необхідно дослідити напружено-деформований стан пружних тіл шару та труби. На внутрішній поверхні труби задані напруження, на межах шару – переміщення. Розв’язок просторової задачі теорії пружності отримано узагальненим методом Фур’є стосовно системи рівнянь Ламе в циліндричних координатах, пов’язаних із трубою, та в декартових координатах, пов’язаних із межами шару. Нескінченні системи лінійних алгебраїчних рівнянь, які отримані в результаті задовольняння граничних умов та умов сполучення, розв’язано методом зрізання. В результаті отримані переміщення та напруження в різних точках пружного шару та пружної труби. Завдяки підібраному параметру зрізання для заданих геометричних характеристик виконання граничних умов доведено до 10-3. Проведено аналіз напружено-деформованого стану тіла за різних товщин труби, а також за різних відстаней від труби до меж шару. Подані графіки нормальних та дотичних напружень на межі труби та шару, а також нормальні напруження на внутрішній поверхні труби. Вказані графіки напружень свідчать про те, що у разі наближення труби до верхньої межі шару напруження в тілі шару та в тілі труби зростають, у разі зменшення товщини труби напруження в тілі шару зменшуються, а в тілі труби зростають. Запропонований метод може використовуватись для розрахунку конструкцій та деталей, розрахункові схеми яких співпадають з постановкою задачі даної роботи. Наведений аналіз напруженого стану може бути використаний для підбору геометричних параметрів конструкції, що проектується, а графік напружень на межі труби та шару – для аналізу міцності з’єднання.

Біографія автора

Vitaliy Yu. Miroshnikov, Харківський національний університет будівництва та архітектури (61002, Україна, м. Харків, вул. Сумська, 40)

Кандидат технічних наук

Посилання

Vaysfeld, N., Popov, G., & Reut, V. (2015). The axisymmetric contact interaction of an infinite elastic plate with an absolutely rigid inclusion. Acta Mechanica, vol. 226, iss. 3, pp. 797–810. https://doi.org/10.1007/s00707-014-1229-7.

Popov, G. Ya. & Vaysfeld, N. D. (2014). Solving an axisymmetric problem of elasticity for an infinite plate with a cylindrical inclusion with allowance for its specific weight. International Applied Mechanics, vol. 50, iss. 6, pp. 627–636. https://doi.org/10.1007/s10778-014-0661-7

Guz, A. N., Kubenko, V. D., & Cherevko, M. A. (1978). Difraktsiya uprugikh voln [Diffraction of elastic waves]. Kiyev: Naukova Dumka, 307 p. (in Russian).

Grinchenko, V. T. & Meleshko, V. V. (1981). Garmonicheskiye kolebaniya i volny v uprugikh telakh [Harmonic oscillations and waves in elastic bodies]. Kiyev: Naukova Dumka, 284 p. (in Russian).

Grinchenko, V. T. & Ulitko, A. F. (1968). An exact solution of the problem of stress distribution close to a circular hole in an elastic layer. Soviet Applied Mechanics, vol. 4, iss. 10, pp. 31 – 37. https://doi.org/10.1007/BF00886618

Grinchenko, V. T. & Ulitko, A. F. (1985). Prostranstvennyye zadachi teorii uprugosti i plastichnosti. Ravnovesiye uprugikh tel kanonicheskoy formy [Spatial problems of the theory of elasticity and plasticity. Equilibrium of elastic bodies of canonical form]. Kiyev: Naukova Dumka, 280 p. (in Russian).

Volchkov, V. V., Vukolov, D. S., & Storozhev, V. I.(2016). Difraktsiya voln sdviga na vnutrennikh tunnel'nykh tsilindricheskikh neodnorodnostyakh v vide polosti i vklyucheniya v uprugom sloye so svobodnymi granyami [Diffraction of shear waves on internal tunnel cylindrical inhomogeneities in the form of a cavity and inclusion in the elastic layer with free face]. Mekhanika tverdogo tela – Mechanics of Rigid Bodies, vol. 46, pp. 119 – 133 (in Russian).

Nikolayev, A. G. & Protsenko, V. S. (2011). Obobshchennyy metod Furye v prostranstvennykh zadachakh teorii uprugosti [The generalized Fourier method in spatial problems of the theory of elasticity].Kharkov: Nats. aerokosm. universitet im. N. Ye. Zhukovskogo «KHAI», 344 p. (in Russian).

Nikolayev, A. G. & Orlov, Ye. M. (2012). Resheniye pervoy osesimmetrichnoy termouprugoy krayevoy zadachi dlya transversalno-izotropnogo poluprostranstva so sferoidalnoy polostyu [Solution of the first axisymmetric thermoelastic boundary value problem for a transversely isotropic half-space with a spheroidal cavity]. Problemy obchyslyuvalnoyi mekhaniky i mitsnosti konstruktsiy – Problems of computational mechanics and strength of structures, vol. 20, pp. 253-259 (in Russian).

Miroshnikov, V. Yu. (2018). First basic elasticity theory problem in a half-space with several parallel round cylindrical cavities. Journal of Mechanical Engineering, vol. 21, no. 2, pp. 12–18.

Protsenko, V. & Miroshnikov, V. (2018). Investigating a problem from the theory of elasticity for a half-space with cylindrical cavities for which boundary conditions of contact type are assigned. Eastern-European Journal of Enterprise Technologies, vol. 4, no. 7, pp. 43–50. https://doi.org/10.15587/1729-4061.2018.139567

Nikolayev, A. G., Shcherbakova, A. Yu., & Yukhno, A. I. (2006). Deystviye sosredotochennoy sily na transversalno-izotropnoye poluprostranstvo s paraboloidalnym vklyucheniyem [Action of concentrated force on a transversely-isotropic half-space with paraboloidal inclusion]. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov – Questions of design and production of aircraft structures, vol. 2, pp. 47–51 (in Russian).

Miroshnikov, V. Yu. (2018). Evaluation of the stress-strain state of half-space with cylindrical cavities. Visnyk Dniprovskoho universytetu. Seriya: Mekhanika – Bulletin of the Dnipro University. Series: Mechanics, vol. 26, no. 5, pp. 109–118.

Nikolayev, A. G. & Tanchik, Ye. A. (2013). Raspredeleniye napryazheniy v yacheyke odnonapravlennogo kompozitsionnogo materiala, obrazovannogo chetyrmya tsilindricheskimi voloknami [Stress distribution in a cell of a unidirectional composite material formed by four cylindrical fibers]. Visnyk Odeskoho natsionalnoho universytetu. Matematyka. Mekhanika – Odesa National University Herald. Mathematics and Mechanics, vol. 4, pp. 101–111 (in Russian).

Protsenko, V. S. & Ukrainets, N. A. (2015) Primeneniye obobshchennogo metoda Fur'ye k resheniyu pervoy osnovnoy zadachi teorii uprugosti v poluprostranstve s tsilindricheskoy polostyu [Application of the generalized Fourier method to the solution of the first main problem of the theory of elasticity in a half-space with a cylindrical cavity]. Visnyk Zaporizkoho natsionalnoho universytetu – Visnyk of Zaporizhzhya National University, vol. 2, pp. 193–202 (in Russian).

Solyanik-Krasa, K. V. (1987). Osesimmetrichnaya zadacha teorii uprugosti [Axisymmetric problem of the theory of elasticity]. Moscow: Stroyizdat, 336 p. (in Russian).

##submission.downloads##

Опубліковано

2019-06-20

Номер

Розділ

Динаміка і міцність машин