Методологія розв’язання задач пошуку оптимального розміщення тривимірних тіл

Автор(и)

  • Andrii M. Chuhai Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0002-4079-5632
  • Yurii H. Stoian Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10), Україна https://orcid.org/0000-0002-8053-0276

Ключові слова:

упаковка, тривимірні тіла, геометричне проектування, Ф-функції, математичне моделювання, неперервні обертання, нелінійна оптимізація

Анотація

Робота присвячена розв’язанню оптимізаційних задач упаковки тривимірних тіл шляхом побудови точних математичних моделей та розробки підходів, що базуються на застосуванні оптимізаційних методів нелінійного програмування та сучасних розв’язувачів. Розроблено конструктивні засоби математичного та комп'ютерного моделювання відношень орієнтованих та неорієнтованих тривимірних тіл, поверхня яких утворена циліндричними, конічними, сферичними  поверхнями та площинами, у вигляді нових класів Ф-функцій та квазі Ф-функцій.  На базі розроблених засобів математичного моделювання побудовано і досліджено базову математичну модель задачі оптимальної упаковки тривимірних тіл, поверхні яких утворені циліндричними, конічними, сферичними поверхнями і площинами, та різні її реалізації, що охоплюють широкий клас наукових і прикладних задач упаковки тривимірних тіл.  Розроблено загальну методологію  розв’язання задач упаковки тривимірних тіл, що допускають одночасно неперервні повороти та трансляції. Запропоновано стратегії, методи і алгоритми розв’язання оптимізаційних задач упаковки тривимірних тіл з урахуванням технологічних обмежень (мінімально допустимі відстані, зони заборони, можливість неперервних трансляцій та обертань). Виходячи з запропонованих засобів математичного моделювання, математичних моделей, методів і алгоритмів створено програмне забезпечення з використанням технології паралельних обчислень для автоматичного розв’язання оптимізаційних задач упаковки тривимірних тіл. Отримані результати можуть бути застосовані під час розв’язання задач оптимізації компоновочних розв’язків, для комп’ютерного моделювання в матеріалознавстві, у порошковій металургії та нанотехнологіях, під час оптимізації процесу 3D-друку для SLS технології адитивного виробництва, у інформаційно-логістичних системах, що забезпечують оптимізацію перевезення та зберігання вантажів.

Біографії авторів

Andrii M. Chuhai, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Доктор технічних наук

Yurii H. Stoian, Інститут проблем машинобудування ім. А. М. Підгорного НАН України (61046, Україна, м. Харків, вул. Пожарського, 2/10)

Доктор технічних наук, член-кореспондент НАН України

Посилання

Petrov, M. S., Gaidukov, V. V., & Kadushnikov, R. M. (2004). Numerical method for modelling the microstructure of granular materials. Powder Metallurgy and Metal Ceramics, no. 43, pp. 330–335. https://doi.org/10.1023/B:PMMC.0000048126.87171.f9.

Wang, Y., Lin, C. L., & Miller, J. D. (2016). 3D image segmentation for analysis of multisize particles in a packed particle bed. Powder Technology, vol. 301, pp. 160–168. https://doi.org/10.1016/j.powtec.2016.05.012.

Verkhoturov, M., Petunin, A., Verkhoturova, G., Danilov, K., & Kurennov, D. (2016). The 3D object packing problem into a parallelepiped container based on discrete-logical representation. IFAC-PapersOnLine, vol. 49, iss. 12, pp. 1–5. https://doi.org/10.1016/j.ifacol.2016.07.540.

Karabulut, K. A. & İnceoğlu, M. (2004). Hybrid genetic algorithm for packing in 3D with deepest bottom left with fill method. Advances in Information Systems, no. 3261, pp. 441–450. https://doi.org/10.1007/978-3-540-30198-1_45.

Cao, P., Fan, Z., Gao, R., & Tang, J. (2016). Complex housing: modelling and optimization using an improved multi-objective simulated annealing algorithm. Proceedings of ASME, no. 60563, V02BT03A034. https://doi.org/10.1115/DETC2016-60563.

Guangqiang, L., Fengqiang, Z., Rubo, Z., Jialu, Du., Chen, G., & Yiran, Z. (2016). Parallel particle bee colony algorithm approach to layout optimization. Journal of Computational and Theoretical Nanoscience, vol. 13, no. 7, pp. 4151–4157. https://doi.org/10.1166/jctn.2016.5263.

Torczon, V. & Trosset, M. W. (1998). From evolutionary operation to parallel direct search: Pattern search algorithms for numerical optimization. Computing Science and Statistics, vol. 29, pp. 396–401.

Birgin, E. G., Lobato, R. D., & Martіnez, J. M. (2016). Packing ellipsoids by nonlinear optimization. Journal of Global Optimization, no. 65, pp. 709–743. https://doi.org/10.1007/s10898-015-0395-z.

Stoyan, Y., Pankratov, A., & Romanova, T. (2016). Quasi-phi-functions and optimal packing of ellipses. Journal of Global Optimization, no. 65 (2), pp. 283–307. https://doi.org/10.1007/s10898-015-0331-2.

Fasano, G. A. (2013). Global optimization point of view to handle non-standard object packing problems. Journal of Global Optimization, no. 55 (2), pp. 279–299. https://doi.org/10.1007/s10898-012-9865-8.

Egeblad, J., Nielsen, B. K., & Brazil, M. (2009). Translational packing of arbitrary polytopes. Computational Geometry: Theory and Applications, vol. 42, iss. 4, pp. 269–288. https://doi.org/10.1016/j.comgeo.2008.06.003.

Liu, X., Liu, J., Cao, A., Yao, Z. (2015). HAPE3D ‑ a new constructive algorithm for the 3D irregular packing problem. Frontiers of Information Technology and Electronic Engineering, no. 16 (5), pp. 380–390. https://doi.org/10.1631/FITEE.1400421.

Youn-Kyoung, J. & Sang, D. N. (2014). Intelligent 3D packing using a grouping algorithm for automotive container engineering. Journal of Computational Design and Engineering, vol. 1, iss. 2, pp. 140–151. https://doi.org/10.7315/JCDE.2014.014.

Kallrath, J. (2017). Packing ellipsoids into volume-minimizing rectangular boxes. Journal of Global Optimization, no. 67, pp. 151–185. https://doi.org/10.1007/s10898-015-0348-6.

Stoyan, Y. G. & Chugay, A. M. (2014). Packing different cuboids with rotations and spheres into a cuboid. Advances in Decision Sciences, vol. 2014, 571743, 19 p. https://doi.org/10.1155/2014/571743.

Stoyan, Y. G., Semkin, V. V., & Chugay, A. M. (2016). Modeling close packing of 3D objects. Cybernetics and Systems Analysis, no. 52, pp. 296–304. https://doi.org/10.1007/s10559-016-9826-1.

Pankratov, O., Romanova, T., Stoyan, Y., & Chuhai, A. (2016). Optimization of packing polyhedra in spherical and cylindrical containers. Eastern-European Journal of Enterprise Technology, vol. 1, no. 4 (79), pp. 39–47. https://doi.org/10.15587/1729-4061.2016.60847.

Stoyan, Y. G. & Chugay, A. M. (2012). Mathematical modeling of the interaction of non-oriented convex polytopes. Cybernetic Systems Analysis, no. 48, pp. 837–845. https://doi.org/10.1007/s10559-012-9463-2.

Chugay, A. M. (2005). Resheniye zadachi upakovki krugov v vypuklyy mnogougolnik s pomoshchyu modifitsirovannogo metoda suzhayushchikhsya okrestnostey [Solution of the problem of packing circles into a convex polygon using the modified method of tapering neighborhoods]. Radioelektronika i informatika – Radioelectronics and Informatics, no. 1, pp. 58–63 (in Russian).

Stoian, Y. E., Chugay, A. M., & Pankratov, A. V. (2018). Two approaches to modeling and solving the packing problem for convex polytopes. Cybernetics and Systems Analysis, no. 54, pp. 585–593. https://doi.org/10.1007/s10559-018-0059-3.

##submission.downloads##

Опубліковано

2020-06-29

Номер

Розділ

Прикладна математика