Predicting the value of cultural property in the context of the history of mathematical Prediction
DOI:
https://doi.org/10.32461/2226-0285.1.2014.148253Keywords:
mathematical forecasting, prediction value, cultural value, cultural monuments, the principles of assessment,Abstract
Predicting the cost of cultural values should be considered only in the context of mathematical methods of forecasting, as well as the principles and approaches developed throughout the history of mankind. History of mathematical prediction indicates the presence of regular sequence improvements applied from a primitive-looking machine calculation inaccessible distances in the ancient world, further development of the apparatus of algebra, probability theory Connection methods with algebra, and opening K.F.Gaussom open-M.Lezhandrom, multivariate regression, opening optimizing forecasting systems based on calculation methods of multivariate regression in the works V.V.Leontev and I.I. Schmalhausen transition to prediction systems with elements of selective selection of the most probable solutions A.G. Ivakhnenko and finally to the prediction systems with elements of adaptive modeling intuitive and cyclic forecasting, attracting elements random migration parameters and other attributes of the evolutionary forecasting.
Modern worldview indicates the need for the implementation of the model for all nine traits in the evolutionary process ofpredictive algorithms. The general trend of the development of mathematical forecasting methods also indicates that the main difference of subjective forecasting methods and experiences in own who man. This difference is broadly, the presence in the subject's subconscious mind and can not be considered interpretation as positive or negative. Thus, the modern mathematical forecasting is clear sound thanks mechanisms calculation, while the results of forecasting undertaken man have subjective symptoms that contains the secret organization of the unconscious. Today, there are many research papers devoted to the topic of predicting the value of cultural property, offered interesting proprietary methods developed regulations establish relevant training programs, conducting scientific and practical conferences and other forums. Post acquired urgency and was wondering how to market participants as cultural monuments and for financiers and museum professionals. Among a variety of proposed methods most interesting are those that are based on the latest achievements of mathematical prediction and those who have new ideas and a new level of humanitarian and development of general reality.
In the history of mathematical forecasting of the most revolutionary distinguish the following stages: the allocation of human wildlife due to the emergence and development of the capacity for abstract thought and observation and analysis of causal relationships, the emergence of ancient Mesopotamia, Egypt and Greece arithmetical methods ofcalculating the unknown and geometric methods of calculation reach distances. Further, the emergence and development of medieval history and, later, the discovery of Blaise Pascal (1623 – 1662), Pierre de Fermat (1601-1665) and Jakob Bernoulli (1654 -1705), who studied the laws of gambling, laid the foundations probability theory and discovered mankind opportunities to work with arbitrary values and systems that develop randomly. There are opportunities to perform such predictions, which is a place for assessing the likelihood of events does not ecessarily follow. The next step in the development of mathematical prediction of achievement were K.F.Hausa (1777-1855), which is about 1795-1798 years, exploring the phenomenon of arbitrary algebraic techniques deviation values of wo empirical observations and related features, invented a universal way of finding the optimal parameters for linear equations of mathematical approximation of their addiction. Extensive practical use Gauss in many fields of science, mathematics stimulated the improvement of forecasting methods and determined the emergence of modern multivariate regression analysis, the implementation of which had a powerful influence on all further development of science. In the late 19th and early 20th centuries the most successful mathematical prediction was in biology and economics. In 20-ies multivariate analysis formed the basis of modern macroeconomics (V.V.Leontyev, 1905 -1999), a new evolutionary theory in biology (I.I. Schmalhausen 1884-1948), linear prediction and modeling the behavior of complex systems,dynamically developing. The discovery of the theory of information and the rapid development of computer technology, gave birth to the idea of creating an artificial intelligence, the operation of which is also described on the basis of mathematical parametric prediction. It was found that the most perfect machine forecasting has become such a synthesized human computational system that have the ability to develop and self-improvement will evolve and will be the ability to subjective thinking. The work of numerous scholars of the twentieth century give a hope (O.H. Ivakhnenko 1913-2007) thanks concepts of the modern theory of evolution (V.V.Indutny 1988), in which the prediction is based on computer simulation mechanisms inherent in the evolutionary process: the general direction prediction and the outcome of the interaction of systemic factors (interactivity), expanding the variety and variability of the results, and the cyclical nature of the fluctuation prediction, selection of the most advanced solutions, a hierarchical organization of intermediate and final conclusions; avtodestruktive regulation prediction results (partial liquidation of previous decisions), structural development of predictive models, the ability to heal itself of unwanted states.
References
Грешилов А. А. Математические методы построения прогнозов /Грешилов А. А., Стакун В. А., Стакун А. А. – М.: Радио и связь, 1997. – 112 с.
Ивахненко А.Г. Моделирование сложных систем по экспериментальным данням / Ивахненко А.Г., Юрачковский Ю.П. – М.: Радио и связь, 1987. – 200 с.
Индутный В.В. Обобщение принципов теории эволюции в геологи/ Индутный В.В. – К.: Препринт ИГФМ АН УССР, 1988.
Индутный В.В. Структурное развитие горных пород в свете теории эволюции: автореферат диссертации на соискание учен. степени д. геолого-минералогических наук /Индутный В.В. – К.: ИГМР НАН Украины, 1993. – 37с.
История математики: в 3 т.; под ред. А.П. Юшкевича. Т. 1. С древнейших времен до начала Нового времени. Т. 2. Математика XVII столетия.Т. 3. Математика XVIII столетия. – М.: Наука. Т.1. – 1970. – 352 с.;
Т.2. – 1970. – 301с.; Т.3. – 1972. – 496с.
Івахненко О.Г. Передбачення випадкових процесів /Івахненко О.Г., Лапа В.Г. – К.: Наук. думка, 1969. – 154 с.
Ивахненко А.Г. Индуктивный метод самоорганизации моделей сложных систем / Ивахненко А.Г. – К.: Наук. думка, 1982. – 145 с.
Індутний В.В. Оцінка пам′яток культури /Індутний В.В. – К.: ОПД Моляр С.В., 2009. – 537с.
Кликс Ф. Пробуждающееся мышление. У истоков человеческого интеллекта; перевод с нем. Б.М.Величковского /Кликс Ф. – М.: Прогресс, 1983.
Леонтьев В.В. Будущее мировой экономики /В. Леонтьев, Э. Картер, П. Петри [Электронный ресурс]. – Режим доступа: bookre.org/reader?file=596901.
Леонтьев В.В. Межотраслевой анализ военных расходов / В. Леонтьев, Ф. Дюшан) [Электронный ресурс]. – Режим доступа: bookre.org/reader?file=596901.
Мостеллер Ф. Анализ данных и регрессия /Мостеллер Ф., Тьюки Дж. – М.: Финансы и статистика, 1982. – 239 с.
Шмальгаузен И. И. Кибернетические вопросы биологии ; под общ. ред. и с предисл. Р. Л. Берг, А. А. Ляпунова /Шмальгаузен И. И. – Новосибирск, Наука, 1968. – 224 с.
Шмальгаузен И. И. Факторы эволюции (теория стабилизирующего отбора) /Шмальгаузен И. И. – М.-Л.: Изд-во АН СССР, 1946. – 396 с.
Hartley R.V.L. Transmission of Information / Bell System Techn. J. 7. 1928. – №3; Shannon C.E. A Mathematical Theory of Communication" / Bell System Techn. J. 27. – 1948. – №3-4.
Greshilov A. A. Matematicheskie metody postroeniya prognozov /Greshilov A. A., Stakun V. A., Stakun A. A. – M.: Radio i svyaz', 1997. – 112 s.
Ivakhnenko A.G. Modelirovanie slozhnykh sistem po eksperimental'nym dannyam / Ivakhnenko A.G., Yurachkovskiy Yu.P. – M.: Radio i svyaz', 1987. – 200 s.
Indutnyy V.V. Obobshchenie printsipov teorii evolyutsii v geologi/ Indutnyy V.V. – K.: Preprint IGFM AN USSR, 1988.
Indutnyy V.V. Strukturnoe razvitie gornykh porod v svete teorii evolyutsii: avtoreferat dissertatsii na soiskanie uchen. stepeni d. geologo-mineralogicheskikh nauk /Indutnyy V.V. – K.: IGMR NAN Ukrainy, 1993. – 37s.
Istoriya matematiki: v 3 t.; pod red. A.P. Yushkevicha. T. 1. S drevneyshikh vremen do nachala Novogo vremeni. T. 2. Matematika XVII stoletiya.T. 3. Matematika XVIII stoletiya. – M.: Nauka. T.1. – 1970. – 352 s.; T.2. – 1970. – 301s.; T.3. – 1972. – 496s.
Ivakhnenko O.H. Peredbachennia vypadkovykh protsesiv /Ivakhnenko O.H., Lapa V.H. – K.: Nauk. dumka, 1969. – 154 s.
Ivakhnenko A.G. Induktivnyy metod samoorganizatsii modeley slozhnykh sistem / Ivakhnenko A.G. – K.: Nauk. dumka, 1982. – 145 s.
Indutnyi V.V. Otsinka pam′yatok kultury /Indutnyi V.V. – K.: OPD Moliar S.V., 2009. – 537s.
Kliks F. Probuzhdayushcheesya myshlenie. U istokov chelovecheskogo intellekta; perevod s nem. B.M.Velichkovskogo / Kliks F. – M.: Progress, 1983.
Leont'ev V.V. Budushchee mirovoy ekonomiki /V. Leont'ev, E. Karter, P. Petri [Elektronnyy resurs]. – Rezhim dostupa: bookre.org/reader?file=596901.
Leont'ev V.V. Mezhotraslevoy analiz voennykh raskhodov / V. Leont'ev, F. Dyushan) [Elektronnyy resurs]. – Rezhim dostupa: bookre.org/reader?file=596901.
Mosteller F. Analiz dannykh i regressiya /Mosteller F., T'yuki Dzh. – M.: Finansy i statistika, 1982. – 239 s.
Shmal'gauzen I. I. Kiberneticheskie voprosy biologii ; pod obshch. red. i s predisl. R. L. Berg, A. A. Lyapunova /Shmal'gauzen I. I. – Novosibirsk, Nauka, 1968. – 224 s.
Shmal'gauzen I. I. Faktory evolyutsii (teoriya stabiliziruyushchego otbora) /Shmal'gauzen I. I. – M.-L.: Izd-vo AN SSSR, 1946. – 396 s.
Hartley R.V.L. Transmission of Information / Bell System Techn. J. 7. 1928. – №3; Shannon C.E. A Mathematical Theory of Communication" / Bell System Techn. J. 27. – 1948. – №3-4.
Downloads
Issue
Section
License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).