Research of a moving crack in anisotropic material

Authors

DOI:

https://doi.org/10.15587/2313-8416.2017.117676

Keywords:

moving crack, anisotropic space, stresses, linear conjugation problem, complex potential

Abstract

The problem of determining the stress-strain state in the vicinity of the Ioffe crack moving with a steady velocity in an elastic homogeneous anisotropic space under the action of a concentrated load applied to its shores, which moves along with the crack, is solved. Using the method of generalized complex potentials, a system of linear conjugation problems is obtained, which are solved analytically by the corresponding algorithm

Author Biographies

Dmytro Bilyi, Oles Honchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

Depatment of Theoretical and Computer Mechanics

Oleksandr Komarov, Oles Honchar Dnipro National University Gagarina ave., 72, Dnipro, Ukraine, 49010

PhD, Associate Professor

Depatment of Theoretical and Computer Mechanics

References

Yoffe, E. H. (1951). LXXV. The moving griffith crack. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42 (330), 739–750. doi: 10.1080/14786445108561302

Cherepanov, G. P. (1974). Mekhanika khrupkogo razrusheniya. Moscow: Nauka, 640.

Radok, J. R. M. (1956). On the solution of problems of dynamic plane elasticity. Quarterly of Applied Mathematics, 14 (3), 289–298. doi: 10.1090/qam/81075

Barenblatt, G. I., Cherepanov, G. P. (1960). O rasklinivanii khrupkih tel. PMM, 24, 4–10.

Craggs, J. W. (1960). On the propagation of a crack in an elastic-brittle material. Journal of the Mechanics and Physics of Solids, 8 (1), 66–75. doi: 10.1016/0022-5096(60)90006-5

Lekhnitskiy, S. G. (1977). Teoriya uprugosti anizotropnogo tela. Moscow: Nauka, 416.

Lekhnitsky, S. G. (1984). Anisotropic plates. New York: Gordon and Breach, Science Publishers, 546.

Stroh, A. N. (1962). Steady State Problems in Anisotropic Elasticity. Journal of Mathematics and Physics, 41 (1-4), 77–103. doi: 10.1002/sapm196241177

Herrmann, K. P., Loboda, V. V., Komarov, A. V. (2004). Contact zone assessment for a fast growing interface crack in an anisotropic bimaterial. Archive of Applied Mechanics, 74 (1-2), 118–129. doi: 10.1007/s00419-004-0342-9

Muskhelishvili, N. I. (1966). Nekotoryye osnovnyye zadachi matematicheskoy teorii uprugosti. Moscow: Nauka, 707.

Published

2017-12-30

Issue

Section

Physics and mathematics