Nanoelectronics «bottom – up»: the role of electrostatics and contacts

Authors

  • Юрій Олексійович Кругляк Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.56272

Keywords:

nanophysics, nanoelectronics, molecular electronics, diffusion-drift model, saturation current, role of contacts

Abstract

Within the concept of «bottom – up» approach of modern nanoelectronics the diffusion-drift model of a current on the basis of the Boltzmann transport equation, the role of the external electric field beyond the linear response regime, field-effect transistor and saturation current, the role of conductor charging, the point and extended models of a conductor, the role of contacts, the model of p – n junctions, the generation of a current in a conductor with asymmetric contacts are discussed

Author Biography

Юрій Олексійович Кругляк, Odessa State Environmental University

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Krugliak, Iu. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Krugliak, Iu. A. (2015). The «bottom – up» nanoelectronics: elements of spintronics and magnetronics. ScienceRise, 8/2 (13), 51–68. doi: 10.15587/2313-8416.2015.47792

Datta, S. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 492. doi: 10.1142/8029

Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen Der Physik, 322 (8), 549–560. doi: 10.1002/andp.19053220806

Lindsay, S. (2009). Introduction to Nanoscience. Oxford, England: Oxford University Press, 472.

Ashkroft, N., Mermin, N. (1979). Fizika tverdogo tela. Vol. 1-2. Moscow: Mir, 393, 392. Available at: http://mat.net.ua/mat/biblioteka-fizika/Ashkroft-tverdoe-telo-t1.pdf

Krugliak, Iu. A. (2015). «Bottom – up» nanoelectronics: the Hall effects, measurement of electrochemical potentials and spin transport in the negf model. ScienceRise, 10/2 (15), 35–67. doi: 10.15587/2313-8416.2015.51353

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 454.

Krugliak, Iu. A. (2015). Graphene in Landauer – Datta – Lundstrom transport model. ScienceRise, 2/2 (7), 93–106. doi: 10.15587/2313-8416.2015.36443

Krugljak, Ju. A., Krugljak, N. E. (2012). Metodicheskie aspekty rascheta zonnoj struktury grafena s uchetom σ–ostova. Teoreticheskie osnovy. Vіsnik Odes'kogo derzh. ekologіchnogo un-tu, 13, 207–218.

Rabiu, M., Mensah, S. Y., Abukari, S. S. (2013). General Scattering Mechanism and Transport in Graphene. Graphene, 02 (01), 49–54. doi: 10.4236/graphene.2013.21007

Bode, N., Mariani, E., von Oppen, F. (2012). Transport properties of graphene functionalized with molecular switches. Journal of Physics: Condensed Matter, 24 (39), 394017. doi: 10.1088/0953-8984/24/39/394017

Dong, H. M., Xu, W., Peeters, F. M. (2011). High-field transport properties of graphene. Journal of Applied Physics, 110 (6), 063704. doi: 10.1063/1.3633771

Chauhan, J., Guo, J. (2011). Inelastic Phonon Scattering in Graphene FETs. IEEE Transactions on Electron Devices, 58 (11), 3997–4003. doi: 10.1109/ted.2011.2164253

Peres, N. M. R. (2010). Colloquium : The transport properties of graphene: An introduction. Reviews of Modern Physics, 82 (3), 2673–2700. doi: 10.1103/revmodphys.82.2673

Barreiro, A., Lazzeri, M., Moser, J., Mauri, F., Bachtold, A. (2009). Transport Properties of Graphene in the High-Current Limit. Physical Review Letters, 103 (7). doi: 10.1103/physrevlett.103.076601

Bol'cman, L. (1984). Izbrannye trudy. Moscow: Mir, 590.

Tarkiainen, R., Ahlskog, M., Penttilä, J., Roschier, L., Hakonen, P., Paalanen, M., Sonin, E. (2001). Multiwalled carbon nanotube: Luttinger versus Fermi liquid. Physical Review B, 64 (19). doi: 10.1103/physrevb.64.195412

Naeemi, A., Savari, R., Meindl, D. (2004). Perfomance comparison between carbon nanotube and copper interconnects for GSI. IEDM Technical Digest. IEEE International Electron Devices Meeting, 699–702. doi: 10.1109/iedm.2004.1419265

Burke, P. J. (2002). Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes. IEEE Transactions On Nanotechnology, 1 (3), 129–144. doi: 10.1109/tnano.2002.806823

Burke, P. J. (2003). An RF circuit model for carbon nanotubes IEEE Transactions On Nanotechnology, 2 (1), 55–58. doi: 10.1109/tnano.2003.808503

Salahuddin, S., Lundstrom, M., Datta, S. (2005). Transport Effects on Signal Propagation in Quantum Wires. IEEE Transactions on Electron Devices, 52 (8), 1734–1742. doi: 10.1109/ted.2005.852170

Kruglyak, Yu. O., Kruglyak, N. E., Strikha, M. V. (2013). Lessons of nanoelectronics: Thermoelectric phenomena in «bottom-up» approach. Sensor Electronics and Microsystem, 10 (1), 6–21.

Rahman, A., Jing Guo, Datta, S., Lundstrom, M. S. (2003). Theory of ballistic nanotransistors. IEEE Transactions on Electron Devices, 50 (9), 1853–1864. doi: 10.1109/ted.2003.815366

Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison – Wesley, 792.

Krugliak, Iu. A. (2014). Generalized Landauer – Datta – Lundstrom model of electron and heat transport for micro- and nanoelectronics. ScienceRise, 5/3 (5), 21–38. doi: 10.15587/2313-8416.2014.30728

Kruglyak, Yu., Strikha, M. (2015). Landauer – Datta – Lundstrom generalized electron transport model for micro- and nanoelectronics. Kyiv: IEEE, 70–74. doi: 10.1109/elnano.2015.7146837

Fundamentals of Nanoelectronics, Part 2: Quantum Models. nanoHUB-U. Available at: http://nanohub.org/courses/FoN2

PurdueX. Free online courses from Purdue University. Available at: https://www.edx.org/school/purduex

Published

2015-12-20

Issue

Section

Physics and mathematics