Development and validation of the «dissolution» test for riboxine tablets

Authors

  • Микола Володимирович Росада National University of Pharmacy 53 Pushkinska str., Kharkiv, Ukraine, 61002, Ukraine
  • Наталія Юріївна Бевз National University of Pharmacy 53 Pushkinska str., Kharkiv, Ukraine, 61002, Ukraine
  • Вікторія Акопівна Георгіянц National University of Pharmacy 53 Pushkinska str., Kharkiv, Ukraine, 61002, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2016.64504

Keywords:

Riboxine, dissolution, UV-Vis absorption spectroscopy, tablets

Abstract

Under conditions of the pharmaceutical industry intensive development and variety of oral drugs, the improvement of specialists’ knowledge about remedies of this category and processes taking place in human’s organism at their absorption remains relevant. To increase the bioavailability of drugs and to reduce adverse pharmacological effects, the dissolution test has been implemented for tablet dosage forms.

Aim. The aim of our research was to develop and to validate the dissolution test methods for tablets, containing Riboxine as an active ingredient, which has metabolic, antihypoxic and antiarrhythmic effect, and recently is produced by Ukrainian pharmaceutical manufacturers.

Methods. The dissolution test was carried out using ERWEKA DT 806 HH instrument for determination of tablets solubility. Analytical research were carried out by the absorption spectroscopy method using Specord 205 («Analytik Jena AG», Germany) spectrometer with the use of OHAUS AP 250D («Ohaus Corporation», USA) electronic laboratory scales and type A laboratory glassware.

Results. As a result of research, the dissolution agent (water), its volume, the active ingredient concentration, and the time of the test (45 minutes) has been chosen. It was suggested to determine the amount of Riboxine passed into the solution by the method of UV-Vis absorption spectroscopy at wavelength 249 nm using standard method.

Validation parameters according to the SPhU requirements, i.e. specificity, linearity, precision (convergence), accuracy, and range of application were studied. It was determined that validation parameters of the method didn’t exceed the critical error (3,0 %).

Conclusion. In result of performed experimental research the spectroscopy method for Riboxine quantitative determination after pharmaco-technological dissolution tests was developed and validated. Dissolution agent, its volume, dissolution time and the amount of tablets for determination was suggested

Author Biographies

Микола Володимирович Росада, National University of Pharmacy 53 Pushkinska str., Kharkiv, Ukraine, 61002

Postgraduate student

Department of Pharmaceutical Chemistry

Наталія Юріївна Бевз, National University of Pharmacy 53 Pushkinska str., Kharkiv, Ukraine, 61002

Candidate of Pharmaceutical Science, Associate Professor

Department of Pharmaceutical Chemistry

Вікторія Акопівна Георгіянц, National University of Pharmacy 53 Pushkinska str., Kharkiv, Ukraine, 61002

Doctor of Pharmaceutical Science, Professor, Head of the department

Department of Pharmaceutical Chemistry

References

Peart, J., Flood, A., Linden, J., Matherne, G. P., Headrick, J. P. (2002). Adenosine-Mediated Cardioprotection in Ischemic-Reperfused Mouse Heart. Journal of Cardiovascular Pharmacology, 39 (1), 117–129. doi: 10.1097/00005344-200201000-00013

Peart, J., Willems, L., Headrick, J. P. (2002). Receptor and non-receptor-dependent mechanisms of cardioprotection with adenosine. American Journal of Physiology – Heart and Circulatory Physiology, 284 (2), H519–H527. doi: 10.1152/ajpheart.00717.2002

Peart, J. N., Gross, G. J. (2003). Adenosine and opioid receptor-mediated cardioprotection in the rat: evidence for cross-talk between receptors. American Journal of Physiology – Heart and Circulatory Physiology, 285 (1), H81–H89. doi: 10.1152/ajpheart.00985.2002

Kursov, S. V., Nikonov, V. V., Hyzhnjak, A. A. et. al (2013). Osoblyvosti gemodynamichnyh efektiv inozytu (korotkyj literaturnyj ogljad za rezul'tatamy vlasnyh sposterezhen'. Medycyna neotlozhnыh sostojanyj, 1 (48), 86–92.

Dachir, S., Shabashov, D., Trembovler, V., Alexandrovich, A. G., Benowitz, L. I., Shohami, E. (2014). Inosine improves functional recovery after experimental traumatic brain injury. Brain Research, 1555, 78–88. doi: 10.1016/j.brainres.2014.01.044

Zai, L., Ferrari, C., Dice, C., Subbaiah, S., Havton, L. A., Coppola, G. et. al (2011). Inosine Augments the Effects of a Nogo Receptor Blocker and of Environmental Enrichment to Restore Skilled Forelimb Use after Stroke. Journal of Neuroscience, 31 (16), 5977–5988. doi: 10.1523/jneurosci.4498-10.2011

Derzhavna Farmakopeja Ukrai'ny. Vol. 1 (2015). Kharkiv: Derzhavne pidpryjemstvo «Ukrai'ns'kyj naukovyj farmakopejnyj centr jakosti likars'kyh zasobiv», 1128.

Kitajs'ka farmakopeja. Vol. 2 (2005). People's Medical Publishing House, 438–440.

Gosudarstvennaja farmakopeja Rossijskoj Federacii. Chep. 1 (2007). Nauchnyj centr jekspertizy sredstv medicinskogo primenenija. RIBOKSIN (FS 42-0275-07), 624–627.

Chitta, R., Pendela, M., Yekkala, R., Herijgers, P., Hoogmartens, J., Adams, E. (2010). Determination of Adenosine and Inosine in Sheep Plasma Using Solid Phase Extraction Followed by Liquid Chromatography with UV Detection. Analytical Letters, 43 (14), 2267–2274. doi: 10.1080/00032711003717323

Rosada, M. V., Bevz, N. Ju., Georgijanc, V. A. (2015). Rozrobka ta validacija metodyky kil'kisnogo vyznachennja ryboksynu v tabletkah. Upravlinnja, ekonomika ta zabezpechennja jakosti v farmacii', 5 (43), 21–26.

Rosada, M. V., Bevz, N. Yu., Garna, N. V., Georgiyants, V. A. (2016). The study of dissolution kinetics of drugs with riboxinum (inosine). Der Pharma Chemica., 8 (1), 412–416. Available at: http://derpharmachemica.com/vol8-iss1/DPC-2016-8-1-412-416.pdf

Published

2016-03-30

Issue

Section

Pharmaceutical Sciences