Effect of transplanted neural progenitors on hippocampal cells proliferation after ischemic brain injury

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.105502

Keywords:

neural progenitor cells, cells transplantation, brain ischemia, hippocampus, cells proliferation

Abstract

The aim of research was to establish the effect of neural progenitors (NP) transplantation on hippocampal cells proliferation after an ischemic brain injury of a mouse.

Methods. An ischemic brain injury was modeled by 20-minutes occlusion of both carotid arteries in mice of FVB line with the further reperfusion. In 24 hours after the occlusion NP, separated from the hippocampus of mice of FVB-Cg-Tg(GFPU),5Nagy/J line, transgenous by a green fluorescent protein (GFP) gen, were stereotaxically transplanted in CA1 hippocampus zone of ischemic animals. To reveal proliferating cells, all animals from experimental groups were intaabdominally administered with synthetic nucleoside 5-bromodeoxyuridine (BrdU). For the assessment of hippocampal cells proliferation after the ischemic brain injury and after NP transplantation, the immunohistochemical coloration of brain cuts was realized using antibodies against BrdU.

Results. The received data demonstrated that NP transplantation after an ischemic brain injury statistically reliably increases the number of BrdU-positive cells in the dentate gyrus comparing with animals from the control pseudo-operated group and the comparison group without the transplantation.

Conclusions. These data allow to suppose that NP transplantation after an ischemic brain injury may influence cells proliferation in the subgranular zone of the dentate gyrus and in such a way stimulate the neurogenesis in the hippocampus

Author Biographies

Oleg Tsupykov, Bogomoletz Institute of Physiology of NAS of Ukraine Bohomoltsya str., 4, Kyiv, Ukraine, 01024

PhD, Leading Researcher

Department of Cytology 

Vitalii Kyryk, State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine Vyshgorodska str., 67, Kyiv, Ukraine, 04114

PhD, Head of Laboratory

Laboratory of Cell and Tissue Cultures

Kateryna Yatsenko, Bogomoletz Institute of Physiology of NAS of Ukraine Bohomoltsya str., 4, Kyiv, Ukraine, 01024

PhD, Senior Researcher

Department of Cytology

Gennadii Butenko, State Institute of Genetic and Regenerative Medicine National Academy of Medical Sciences of Ukraine Vyshgorodska str., 67, Kyiv, Ukraine, 04114

Academician of NAS of Ukraine, Academician of NAMS of Ukraine, Director 

Galyna Skibo, Bogomoletz Institute of Physiology of NAS of Ukraine Bohomoltsya str., 4, Kyiv, Ukraine, 01024

MD, Head of Department

Department of Cytology 

References

  1. Ihunwo, A., Tembo, L., Dzamalala, C. (2016). The dynamics of adult neurogenesis in human hippocampus. Neural Regeneration Research, 11 (12), 1869–1883. doi: 10.4103/1673-5374.195278
  2. Rusznak, Z., Henskens, W., Schofield, E., Kim, W. S., Fu, Y. (2016). Adult Neurogenesis and Gliogenesis: Possible Mechanisms for Neurorestoration. Experimental Neurobiology, 25 (3), 103–112. doi: 10.5607/en.2016.25.3.103
  3. Goncalves, J. T., Schafer, S. T., Gage, F. H. (2016). Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell, 167 (4), 897–914. doi: 10.1016/j.cell.2016.10.021
  4. Choi, J. H., Yoo, K.-Y., Lee, C. H., Park, J. H., Yan, B. C., Kwon, S.-H. et. al. (2012). Comparison of Neurogenesis in the Dentate Gyrus Between the Adult and Aged Gerbil Following Transient Global Cerebral Ischemia. Neurochemical Research, 37 (4), 802–810. doi: 10.1007/s11064-011-0675-z
  5. Kuzumaki, N., Ikegami, D., Tamura, R., Sasaki, T., Niikura, K., Narita, M. et. al. (2010). Hippocampal epigenetic modification at the doublecortin gene is involved in the impairment of neurogenesis with aging. Synapse, 64 (8), 611–616. doi: 10.1002/syn.20768
  6. Tornero, D., Tsupykov, O., Granmo, M., Rodriguez, C., Gronning-Hansen, M., Thelin, J. et. al. (2017). Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli. Brain, 140 (3), 692–706. doi: 10.1093/brain/aww347
  7. Jenny, B., Kanemitsu, M., Tsupykov, O., Potter, G., Salmon, P., Zgraggen, E. et. al. (2009). Fibroblast Growth Factor-2 Overexpression in Transplanted Neural Progenitors Promotes Perivascular Cluster Formation with a Neurogenic Potential. Stem Cells, 27 (6), 1309–1317. doi: 10.1002/stem.46
  8. Ziebell, F., Martin-Villalba, A., Marciniak-Czochra, A. (2014). Mathematical modelling of adult hippocampal neurogenesis: effects of altered stem cell dynamics on cell counts and bromodeoxyuridine-labelled cells. Journal of The Royal Society Interface, 11 (94), 20140144. doi: 10.1098/rsif.2014.0144
  9. Magavi, S. S., Macklis, J. D. (2008). Identification of Newborn Cells by BrdU Labeling and Immunocytochemistry In Vivo. Methods in Molecular Biology, 438, 335–343. doi: 10.1007/978-1-59745-133-8_25
  10. Drew, L. J., Fusi, S., Hen, R. (2013). Adult neurogenesis in the mammalian hippocampus: Why the dentate gyrus? Learning and Memory, 20 (12), 710–729. doi: 10.1101/lm.026542.112
  11. Rolando, C., Taylor, V. (2014). Neural stem cell of the hippocampus: development, physiology regulation, and dysfunction in disease. Current Topics in Developmental Biology, 107, 183–206. doi: 10.1016/b978-0-12-416022-4.00007-x
  12. Tsupykov, O. M., Kyryk, V. M., Rybachuk, O. A., Poberezhnyi, P. A., Mamchur, A. A., Butenko, G. M. et. al. (2013). Effect of neural stem cell transplantation on cognitive functions of mice after cerebral ischemia-reperfusion. Cell and Organ Transplantology, 1 (1), 92–95. doi: 10.22494/cot.v1i1.51
  13. Dong, J., Liu, B., Song, L., Lu, L., Xu, H., Gu, Y. (2011). Neural stem cells in the ischemic and injured brain: endogenous and transplanted. Cell and Tissue Banking, 13 (4), 623–629. doi: 10.1007/s10561-011-9283-z
  14. Lieberwirth, C., Pan, Y., Liu, Y., Zhang, Z., Wang, Z. (2016). Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Research, 1644, 127–140. doi: 10.1016/j.brainres.2016.05.015
  15. Fluri, F., Schuhmann, M. K., Kleinschnitz, C. (2015). Animal models of ischemic stroke and their application in clinical research. Drug Design, Development and Therapy, 9, 3445–3454. doi: 10.2147/dddt.s56071
  16. Marlier, Q., Verteneuil, S., Vandenbosch, R., Malgrange, B. (2015) Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Frontiers in Neuroscience, 9, 458. doi: 10.3389/fnins.2015.00458
  17. Sun, C. R., Chen, Z. H., Yin, S. Y., Chen, S., Hong, Y., Yan, W., Zhang, J. M. (2013). Brain ischemia induces regeneration of interneurons but not projection neurons. Restorative Neurology and Neuroscience, 31 (4), 461–472.
  18. Choi, J., Hwang, I., Yoo, D., Lee, K., Park, J., Jung, H. et. al. (2016). Glucose metabolism and neurogenesis in the gerbil hippocampus after transient forebrain ischemia. Neural Regeneration Research, 11 (8), 1254–1259. doi: 10.4103/1673-5374.189189
  19. Rodriguez-Grande, B., Varghese, L., Molina-Holgado, F., Rajkovic, O., Garlanda, C., Denes, A., Pinteaux, E. (2015). Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia. Journal of Neuroinflammation, 12 (1), 15. doi: 10.1186/s12974-014-0227-y
  20. Bettio, L. E. B., Rajendran, L., Gil-Mohapel, J. (2017). The effects of aging in the hippocampus and cognitive decline. Neuroscience & Biobehavioral Reviews, 79, 66–86. doi: 10.1016/j.neubiorev.2017.04.030
  21. Jin, K., Mao, X., Xie, L., Greenberg, R. B., Peng, B., Moore, A. et. al. (2010). Delayed transplantation of human neural precursor cells improves outcome from focal cerebral ischemia in aged rats. Aging Cell, 9 (6), 1076–1083. doi: 10.1111/j.1474-9726.2010.00638.x
  22. Darsalia, V., Kallur, T., Kokaia, Z. (2007). Survival, migration and neuronal differentiation of human fetal striatal and cortical neural stem cells grafted in stroke-damaged rat striatum. European Journal of Neuroscience, 26 (3), 605–614. doi: 10.1111/j.1460-9568.2007.05702.x

Published

2017-06-30

How to Cite

Tsupykov, O., Kyryk, V., Yatsenko, K., Butenko, G., & Skibo, G. (2017). Effect of transplanted neural progenitors on hippocampal cells proliferation after ischemic brain injury. ScienceRise: Medical Science, (6 (14), 32–36. https://doi.org/10.15587/2519-4798.2017.105502

Issue

Section

Medical Science