Spinal muscular atrophy – problems of pathogenesis and choice of treatment
DOI:
https://doi.org/10.15587/2519-4798.2017.107795Keywords:
SMA, SMN1, splicing, axonal transport, valproic acid, antisense oligonucleotides, NusinersenAbstract
Aim. The use of inhibitors of histones deacetylase, especially valproates together with the vitamin therapy and the complex of physical exercises was the main method of the treatment of patients with SMA till today. The elaboration of the first, officially acknowledged FDA preparation for SMA treatment forces to review the expedience of the complex therapy using valporoic acid, vitamin additives and physical exercises.
Methods. The study included 12 patients with different forms of amyotrophy. Depending on the complex of received therapeutic arrangements, they were divided in 4 groups. The treatment effectiveness was estimated in points of Hammersmith scale of the motor function. The comparison of the treatment effectiveness in different groups of patients was realized with the calculation of Student coefficients.
Result., Motor possibilities of patients in all groups essentially differed from each other depending on SMA type. The number of points, received by patients with the same SMA type, almost didn’t differ depending of a group of patients.
Conclusions. Motor possibilities of patients are mainly connected with their initial phenotype, only partially influenced by the used treatment methods. The effectiveness of medical means at SMA depends not on the quantity of selected groups of preparations and additional treatment methods but on the initial phenotype
References
- Markowitz, J. A., Singh, P., Darras, B. T. (2012). Spinal Muscular Atrophy: A Clinical and Research Update. Pediatric Neurology, 46 (1), 1–12. doi: 10.1016/j.pediatrneurol.2011.09.001
- Prior, T. W., Nagan, N. (2016). Spinal Muscular Atrophy: Overview of Molecular Diagnostic Approaches. Current Protocols in Human Genetics, 9 (27), 1–13. doi: 10.1002/0471142905.hg0927s88
- Pedachenko, E. G., Yarmolyuk, E. S. (2016). Orfannye i redkie zabolevaniya v neyrohirurgii: priglashenie k diskussii. Ukrains'kiy neyrohіrurgіchniy zhurnal, 2, 5–17.
- Seliverstov, Yu. A., Klyushnikov, S. A., Illarioshkin, S. N. (2015). Spinal'nye myshechnye atrofii: ponyatie, differentsial'naya diagnostika, perspektivy lecheniya. Nervnye bolezni, 3, 9–17.
- Kolb, S. J., Kissel, J. T. (2015). Spinal Muscular Atrophy. Neurologic Clinics, 33 (4), 831–846. doi: 10.1016/j.ncl.2015.07.004
- Russman, B. S. (2007). Spinal Muscular Atrophy: Clinical Classification and Disease Heterogeneity. Journal of Child Neurology, 22 (8), 946–951. doi: 10.1177/0883073807305673
- Wirth, B. (2000). An Update of the Mutation Spectrum of the Survival Motor Neuron Gene (SMN1) in Autosomal Recessive Spinal Muscular Atrophy (SMA). Human Mutation, 15 (3), 228–237. doi: 10.1002/(sici)1098-1004(200003)15:3<228::aid-humu3>3.0.co;2-9
- Zabnenkova, V. V., Dadali, E. L., Polyakov, A. V. (2013). Proksimal'naya spinal'naya myshechnaya atrofiya tipov I–IV: osobennosti molekulyarno-geneticheskoy diagnostiki. Nervno-myshechnye bolezni, 3, 27–31.
- Zhu, J., Mayeda, A., Krainer, A. R. (2001). Exon Identity Established through Differential Antagonism between Exonic Splicing Silencer-Bound hnRNP A1 and Enhancer-Bound SR Proteins. Molecular Cell, 8 (6), 1351–1361. doi: 10.1016/s1097-2765(01)00409-9
- Kiss, T. (2004). Biogenesis of small nuclear RNPs. Journal of Cell Science, 117 (25), 5949–5951. doi: 10.1242/jcs.01487
- Fallini, C., Zhang, H., Su, Y., Silani, V., Singer, R. H., Rossoll, W., Bassell, G. J. (2011). The Survival of Motor Neuron (SMN) Protein Interacts with the mRNA-Binding Protein HuD and Regulates Localization of Poly(A) mRNA in Primary Motor Neuron Axons. Journal of Neuroscience, 31 (10), 3914–3925. doi: 10.1523/jneurosci.3631-10.2011
- Sleeman, J. (2013). Small nuclear RNAs and mRNAs: linking RNA processing and transport to spinal muscular atrophy. Biochemical Society Transactions, 41 (4), 871–875. doi: 10.1042/bst20120016
- Fallini, C., Bassell, G. J., Rossoll, W. (2012). Spinal muscular atrophy: The role of SMN in axonal mRNA regulation. Brain Research, 1462, 81–92. doi: 10.1016/j.brainres.2012.01.044
- Fallini, C., Rouanet, J. P., Donlin-Asp, P. G., Guo, P., Zhang, H., Singer, R. H. et. al. (2013). Dynamics of survival of motor neuron (SMN) protein interaction with the mRNA-binding protein IMP1 facilitates its trafficking into motor neuron axons. Developmental Neurobiology, 74 (3), 319–332. doi: 10.1002/dneu.22111
- Fallini, C., Donlin-Asp, P. G., Rouanet, J. P., Bassell, G. J., Rossoll, W. (2016). Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons. Journal of Neuroscience, 36 (13), 3811–3820. doi: 10.1523/jneurosci.2396-15.2016
- Medrano, S., Monges, S., Gravina, L. P., Alias, L., Mozzoni, J., Araoz, H. V. et. al. (2016). Genotype–phenotype correlation of SMN locus genes in spinal muscular atrophy children from Argentina. European Journal of Paediatric Neurology, 20 (6), 910–917. doi: 10.1016/j.ejpn.2016.07.017
- Donlin-Asp, P. G., Fallini, C., Campos, J., Chou, C.-C., Merritt, M. E., Phan, H. C. et. al. (2017). The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly. Cell Reports, 18 (7), 1660–1673. doi: 10.1016/j.celrep.2017.01.059
- Hammond, S. M., Hazell, G., Shabanpoor, F., Saleh, A. F., Bowerman, M., Sleigh, J. N. et. al. (2016). Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proceedings of the National Academy of Sciences, 113 (39), 10962–10967. doi: 10.1073/pnas.1605731113
- Singh, N. N., Lee, B. M., DiDonato, C. J., Singh, R. N. (2015). Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Medicinal Chemistry, 7 (13), 1793–1808. doi: 10.4155/fmc.15.101
- Corey, D. R. (2017). Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nature Neuroscience, 20 (4), 497–499. doi: 10.1038/nn.4508
- Singh, N. N., Howell, M. D., Androphy, E. J., Singh, R. N. (2017). How the discovery of ISS-N1 led to the first medical therapy for spinal muscular atrophy. Gene Therapy. doi: 10.1038/gt.2017.34
- Foust, K. D., Wang, X., McGovern, V. L., Braun, L., Bevan, A. K., Haidet, A. M. et. al. (2010). Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nature Biotechnology, 28 (3), 271–274. doi: 10.1038/nbt.1610
- Armbruster, N., Lattanzi, A., Jeavons, M., Van Wittenberghe, L., Gjata, B., Marais, T. et. al. (2016). Efficacy and biodistribution analysis of intracerebroventricular administration of an optimized scAAV9-SMN1 vector in a mouse model of spinal muscular atrophy. Molecular Therapy – Methods & Clinical Development, 3, 16060. doi: 10.1038/mtm.2016.60
- Sokolik, V. V., Kolyada, A. K., Shatillo, A. V. (2014). Vliyanie val'proevoy kisloty na uroven' SMN belka v mononuklearah perifericheskoy krovi bol'nyh so spinal'noy myshechnoy atrofiey i razlichnym chislom kopiy gena SMN2. Zhurnal nevrologii i psihiatrii im. S. S. Korsakova, 114 (6), 53–56.
- Goncharova, A. Ya., Simonyan, V. A., Evtushenko, S. K., Belyakova, M. S., Evtushenko, I. S. (2012). Klinicheskiy sluchay pozdnego debyuta nedifferentsirovannoy spinal'noy amiotrofii. Mezhdunarodnyi nevrologicheskiy zhurnal, 51 (5), 131–133.
- M’yasoedov, V. V. (2016). Sluchay spinal'noy amiotrofii verdniga-goffmana. Kharkiv, 518.
- Aton, J., Davis, R. H., Jordan, K. C., Scott, C. B., Swoboda, K. J. (2013). Vitamin D Intake Is Inadequate in Spinal Muscular Atrophy Type I Cohort. Journal of Child Neurology, 29 (3), 374–380. doi: 10.1177/0883073812471857
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 Dmitry Kolisnyk, Natalia Turchyna
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.