The prognosis model of treatment efficiency for pulmonary tuberculosis in intensive phase of antituberculosis therapy

Authors

DOI:

https://doi.org/10.15587/2519-4798.2018.148744

Keywords:

pulmonary tuberculosis, anti-tuberculosis therapy, neopterin, predicting of treatment efficacy, correspondence analysis

Abstract

Search of ways to improve the treatment efficacy of pulmonary tuberculosis is the main task of phthisiology at the present stage of its development. According to our opinion, one of such way is the prediction of outcomes of anti-tuberculosis therapy intensive phase at its initial stage, which will allow to make correction of the treatment regimen opportunely.

The aim of the study was to determine informative indicators for predicting the efficacy of treatment of patients with pulmonary tuberculosis in the intensive phase of anti-tuberculosis therapy. Based on the results, to create a model for predicting the efficacy of treatment for tuberculosis in the intensive phase for the correction of the treatment regimen.

Materials and methods: 80 patients with active pulmonary tuberculosis, which were registered in categories 1 and 2, were examined. The patients were divided into groups: the first group of 30 patients with positive effect, the second group of 50 patients with delayed or negative treatment effect at the end of the intensive phase. The control group consisted of 20 healthy individuals. The sampling of diagnostic material was performed at the beginning of therapy. The results of clinical analysis of blood, as well as serum levels of neopterin, C-reactive protein, creatinine, ceruloplasmin, haptoglobin, seromukoid were evaluated. To achieve this goal, the nonparametric χ2 criterion and correspondent analysis were used.

Results: There are 3 parameters with threshold values identified, which could be transformed into dichotomous indicators, of the 11 studied indices. These 3 variables are: the proportion of lymphocytes in the leukocyte formula, the content of neopterin, and seromucoids in the serum. Using correspondence analysis method, the formula to predict the result of the intensive phase from the initial values of the indicated variables was derived. Approbation of the formula showed high prediction accuracy (>80 %) for both groups.

Conclusions: With the help of the developed formula, which takes into account the initial indicators of serum neopterin and seromucoid and the proportion of lymphocytes in the leukocyte formula, the efficacy of treatment of pulmonary tuberculosis in the intensive phase of tuberculosis therapy can be predicted

Author Biographies

Olga Hovardovska, Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022

Postgraduate Student

Department of Phthisiology and Pulmonology

Olga Schevchenko, Kharkiv National Medical University Nauky ave., 4, Kharkiv, Ukraine, 61022

MD, Professor, Head of Department

Department of Phthisiology and Pulmonology

Olexandr Arseniev, National University of Pharmacy Pushkinska str., 53, Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Pharmacoinformatics

References

  1. Petrenko, V. I. (2014). Do mizhnarodnoho dnia borotby z tuberkulozom: "Okhopyty try miliony: vyiavyty, likuvaty, vylikuvaty tuberkuloz. Tuberkuloz, lehenevi khvoroby, VIL-infektsiia, 1, 5–7. Available at: http://nbuv.gov.ua/UJRN/Tlkhvil_2014_1_3
  2. Feshchenko, Yu. I., Melnyk, V. M., Turchenko, L. V. (2016). Pohliad na problemu borotby z tuberkulozom v Ukraini. Ukrainskyi pulmonolohichnyi zhurnal, 3, 5–10.
  3. WHO Global tuberculosis report 2018 (2018). Geneva: World Health Organization. Available at: https://www.who.int/tb/publications/global_report/en/
  4. Kurpita, V., Kuzin, I. V., Terleieva, Ya. S., Zabolotko, V. M., Nedospasova, O. P. et. al. (2018). Tuberkuloz v Ukraini: analityko-statystychnyi dovidnyk. Kyiv: DU «Tsentr hromadskoho zdorovia Ministerstva okhorony zdorovia Ukrainy», 105.
  5. Sigal, G. B., Segal, M. R., Mathew, A., Jarlsberg, L., Wang, M., Barbero, S. et. al. (2017). Biomarkers of Tuberculosis Severity and Treatment Effect: A Directed Screen of 70 Host Markers in a Randomized Clinical Trial. EBioMedicine, 25, 112–121. doi: http://doi.org/10.1016/j.ebiom.2017.10.018
  6. Eisenhut, M. (2013). Neopterin in Diagnosis and Monitoring of Infectious Diseases. Journal of Biomarkers, 2013, 1–10. doi: http://doi.org/10.1155/2013/196432
  7. Berdyugina, O. V., Ershova, A. V. (2015). Issledovanie urovnya neopterina pri raznykh formakh tuberkuleznogo vospalitel'nogo protsessa. Meditsinskiy al'yans, 4, 68–72.
  8. Esmedlyaeva, D. S., D'yakova, M. E., Blyum, N. M., Kartashova, T. S. (2011). Biokhimicheskie osobennosti fibrozno-kavernoznogo tuberkuleza legkikh razlichnogo ґeneza. Vestnik Sankt-Peterburgskogo universiteta. Seriya 11. Meditsina, 3, 105–111.
  9. Immanuel, C., Rajeswari, R., Rahman, F., Kumaran, P. P., Chandrasekaran, V., Swamy, R. (2001). Serial evaluation of serum neopterin in HIV seronegative patients treated for tuberculosis. International Journal of Tuberculosis and Lung Disease, 5 (2), 185–190.
  10. Cesur, S., Aslan, T., Hoca, N., Cimen, F., Tarhan, G., Cifci, A. et. al. (2014). Clinical importance of serum neopterin level in patients with pulmonary tuberculosis. International Journal of Mycobacteriology, 3 (1), 5. doi: http://doi.org/10.1016/j.ijmyco.2014.01.002
  11. Skogmar, S., Schon, T., Balcha, T. T., Sturegard, E., Jansson, M., Bjorkman, P. (2015). Plasma Levels of Neopterin and C-Reactive Protein (CRP) in Tuberculosis (TB) with and without HIV Coinfection in Relation to CD4 Cell Count. PLOS ONE, 10 (12), e0144292. doi: http://doi.org/10.1371/journal.pone.0144292
  12. Titarenko, O. T., Dyakova, M. E., Manicheva, O. A., Esmedlyaeva, D. S., Dogonadze, M. Z., Alexeyeva, N. P. et. al. (2014). Mycobacterium tuberculosis biological properties and characteristics of the inflammatory reaction in patients with infiltrative pulmonary tuberculosis. Russian Journal of Infection and Immunity, 4 (3), 221. doi: http://doi.org/10.15789/2220-7619-2014-3-221-228
  13. Unifikovanyi klinichnyi protokol pervynnoi, vtorynnoi (spetsializovanoi) ta tretynnoi (vysokospetsializovanoi) medychnoi dopomohy doroslym (2014). Nakaz MOZ Ukrainy No. 620. 04.09.2014. Available at: https://www.slideshare.net/ssuser3330b2/620-4092014
  14. Hovardovska, O. O. (2018). Rol neopterinu ta biomarkeriv zapalennia u monitorynhu efektyvnosti likuvannia lehenevoho tuberkulozu. Ukrainskyi zhurnal medytsyny, biolohii i sportu, 3 (7 (16)), 90–96.
  15. Kobzar', A. I. (2012). Prikladnaya matematicheskaya statistika. Moscow: FIZMATLIT, 816.
  16. Greenacre, M. (2007). Correspondence Analysis in Practice. London: Chapman & Hall/CRC, 274. doi: http://doi.org/10.1201/9781420011234
  17. Nessonova, M. N. (2018). Matematicheskie modeli i metody postroeniya klassifikatorov v meditsine. Lambert Academic Publishing, 212.
  18. Khantaeva, N. S., Mikhalevich, I. M., Kulesh, D. V. (2011). Analiz i prognozirovanie epidemiologicheskikh pokazateley po tuberkulezu na osnove ispol'zovaniya mnogomernykh metodov issledovaniya. Byulleten' Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy Akademii meditsinskikh nauk, 2 (78), 184–189.
  19. Heffernan, C., Doroshenko, A., Egedahl, M. L., Barrie, J., Senthilselvan, A., Long, R. (2018). Predicting pulmonary tuberculosis in immigrants: a retrospective cohort study. ERJ Open Research, 4 (2), 00170–2017. doi: http://doi.org/10.1183/23120541.00170-2017
  20. Romanowski, K., Balshaw, R. F., Benedetti, A., Campbell, J. R., Menzies, D., Ahmad Khan, F., Johnston, J. C. (2018). Predicting tuberculosis relapse in patients treated with the standard 6-month regimen: an individual patient data meta-analysis. Thorax. doi: http://doi.org/10.1136/thoraxjnl-2017-211120
  21. Khantaeva, N. S., Mikhalevich, I. M., Kulesh, D. V. (2011). Analiz i prognozirovanie epidemiologicheskikh pokazateley po tuberkulezu na osnove ispol'zovaniya mnogomernykh metodov issledovaniya. Byulleten' Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya Rossiyskoy Akademii meditsinskikh nauk, 2 (78), 184–189.
  22. P'yaznova, T. V., Kagan, E. S., Abros'kina, A. A. (2017). Postroenie integral'nogo pokazatelya kompleksnoy otsenki faktorov riska neeffektivnogo iskhoda protivotuberkuleznoy terapii. Fundamental'naya i klinicheskaya meditsina, 1 (1), 33–38.

Published

2018-11-29

How to Cite

Hovardovska, O., Schevchenko, O., & Arseniev, O. (2018). The prognosis model of treatment efficiency for pulmonary tuberculosis in intensive phase of antituberculosis therapy. ScienceRise: Medical Science, (7 (27), 27–32. https://doi.org/10.15587/2519-4798.2018.148744

Issue

Section

Medical Science