Features of the cardiovascular system lesion in patients with COVID-19

Authors

  • Mykola Kopytsya Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039, Ukraine https://orcid.org/0000-0003-4779-7347
  • Iuliia Rodionova Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039, Ukraine https://orcid.org/0000-0003-4779-7347
  • Nathalia Tytarenko Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039, Ukraine https://orcid.org/0000-0002-9339-9262
  • Yaroslava Hilova Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039, Ukraine https://orcid.org/0000-0002-4545-3009
  • Inna Kutya Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039, Ukraine https://orcid.org/0000-0001-5762-1826
  • Alla Kobets Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039, Ukraine https://orcid.org/0000-0001-6090-689X

DOI:

https://doi.org/10.15587/2519-4798.2020.204011

Keywords:

COVID-19, cardiovascular disease, myocardial infarction, troponin, acute heart injury, D-dimer, thromboprophylaxis, hydroxychlorochin, ACE inhibitors, prevention of COVID-19 infection

Abstract

The article is devoted to the analysis of cardiovascular lesions in COVID-19. The main problems of comorbidity are described and recommendations for the treatment of patients with myocardial infarction and COVID-19 are generalized, the features of the appointment of certain groups of drugs are emphasized.

The aim of the research. To study the effect of coronavirus on the cardiovascular system to understand the correct algorithm for providing medical care for cardiovascular diseases.

Methods. As a methodological basis, the article uses the existing data about the epidemiological characteristics of coronavirus infections SARS, MERS, COVID-19 and damage of the cardiovascular system in existing heart diseases and viral pathologies. A new cardiac lesion in the form of acute heart injury is also described, confirmed by an increase in troponin.

Results. As a result of the high contagiousness of the COVID-19 viral infection, treatment of patients with acute myocardial infarction or other cardiovascular pathology in patients with undetermined SARS COV-2 status, it is performed as if he is positive, according to current guidelines. It is advisable for all patients to evaluate the systolic function of the left ventricle during angiography in order to reduce the need for echocardiography and decline the risk of staff infection. Combination of hydroxychloroquine and azithromycin has the proarrhythmogenic effect.

Conclusions. In the context of a global pandemic of coronavirus infection, existing data on the possible risks and lesions of the cardiovascular system in patients with COVID-19 should be taken into account. The treatment and prevention of the spread of infection is based on the assumption that all patients can be potentially infected. It is advisable to use thromboprophylaxis in patients with COVID-19, especially those who have activation of the coagulation system. Treatment of severe COVID-19-pneumonia also requires the appointment of anticoagulants. The key point is the interdisciplinary management of severe cases of COVID-19

Author Biographies

Mykola Kopytsya, Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039

MD, Senior Researcher, Head of Department

Department of Prevention and Treatment of Emergency Conditions

Iuliia Rodionova, Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039

PhD, Researcher

Departmen of Prevention and Treatment of Emergency Conditions

Nathalia Tytarenko, Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039

PhD, Researcher

Department of Prevention and Treatment of Emergency Conditions

Yaroslava Hilova, Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039

PhD, Researcher

Department of Prevention and Treatment of Emergency Conditions

Inna Kutya, Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039

Junior Researcher

Department of Prevention and Treatment of Emergency Conditions

Alla Kobets, Government Institution «L. T. Malaya Therapy National Institute of the National Academy of Medical Sciences of Ukraine» Lyubovi Maloy ave., 2а, Kharkiv, Ukraine, 61039

Junior Researcher

Department of Prevention and Treatment of Emergency Conditions

References

  1. Song, Z., Xu, Y., Bao, L., Zhang, L., Yu, P., Qu, Y. et. al. (2019). From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses, 11 (1), 59. doi: http://doi.org/10.3390/v11010059
  2. Dawood, F. S., Iuliano, A. D., Reed, C., Meltzer, M. I., Shay, D. K., Cheng, P.-Y. et. al. (2012). Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: a modelling study. The Lancet Infectious Diseases, 12 (9), 687–695. doi: http://doi.org/10.1016/s1473-3099(12)70121-4
  3. Nguyen, J. L., Yang, W., Ito, K., Matte, T. D., Shaman, J., Kinney, P. L. (2016). Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA Cardiology, 1 (3), 274. doi: http://doi.org/10.1001/jamacardio.2016.0433
  4. Yu, C. M., Wong, R. S., Wu, E. B. et. al. (2006). Cardiovascular complications of severe acute respiratory syndrome. Postgraduate Medical Journal, 82 (964), 140–144. doi: http://doi.org/10.1136/pgmj.2005.037515
  5. Pan, S., Zhang, H., Li, C., Wang, C. (2003). Cardiac arrest in severe acute respiratory syndrome: analysis of 15 cases. Zhonghua Jie He He Hu Xi Za Zhi, 26, 602–605.
  6. Li, S. S., Cheng, C., Fu, C., Chan, Y., Lee, M., Chan, J. W., Yiu, S. (2003). Left Ventricular Performance in Patients With Severe Acute Respiratory Syndrome. Circulation, 108 (15), 1798–1803. doi: http://doi.org/10.1161/01.cir.0000094737.21775.32
  7. Alhogbani, T. (2016). Acute myocarditis associated with novel Middle East respiratory syndrome coronavirus. Annals of Saudi Medicine, 36 (1), 78–80. doi: http://doi.org/10.5144/0256-4947.2016.78
  8. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y. et. al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. doi: http://doi.org/10.1016/s0140-6736(20)30183-5
  9. Wang, D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J. et. al. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA, 323 (11), 1061. doi: http://doi.org/10.1001/jama.2020.1585
  10. Badawi, A., Ryoo, S. G. (2016). Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis. International Journal of Infectious Diseases, 49, 129–133. doi: http://doi.org/10.1016/j.ijid.2016.06.015
  11. Harris, J. E., Shah, P. J., Korimilli, V., Win, H. (2019). Frequency of troponin elevations in patients with influenza infection during the 2017–2018 influenza season. International Journal of Cardiology Heart and Vasculature, 22, 145–147. doi: http://doi.org/10.1016/j.ijcha.2018.12.013
  12. Chong, P. Y., Chui, P., Ling, A. E. et. al. (2004). Analysis of deaths during the severe acute respiratory syndrome (SARS) epidemic in Singapore: challenges in determining a SARS diagnosis. Archives of Pathology and Laboratory Medicine, 128 (2), 195–204.
  13. Peiris, J., Chu, C., Cheng, V., Chan, K., Hung, I., Poon, L. et. al. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. The Lancet, 361 (9371), 1767–1772. doi: http://doi.org/10.1016/s0140-6736(03)13412-5
  14. Libby, P., Simon, D. I. (2001). Inflammation and Thrombosis. Circulation, 103 (13), 1718–1720. doi: http://doi.org/10.1161/01.cir.103.13.1718
  15. Corrales-Medina, V. F., Alvarez, K. N., Weissfeld, L. A., Angus, D. C., Chirinos, J. A., Chang, C.-C. H. et. al. (2015). Association Between Hospitalization for Pneumonia and Subsequent Risk of Cardiovascular Disease. JAMA, 313 (3), 264. doi: http://doi.org/10.1001/jama.2014.18229
  16. Oudit, G. Y., Kassiri, Z., Jiang, C., Liu, P. P., Poutanen, S. M., Penninger, J. M., Butany, J. (2009). SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. European Journal of Clinical Investigation, 39 (7), 618–625. doi: http://doi.org/10.1111/j.1365-2362.2009.02153.x
  17. HFSA/ACC/AHA statement addresses concerns re: using RAAS antagonists in COVID-19. (2020). Available at: https://professional.heart.org/professional/ScienceNews/UCM_505836_HFSAACCAHA-statement-addresses-concerns-re-using-RAAS-antagonists-in-COVID-19.jsp
  18. Madjid, M., Solomon, S., Vardeny, O. (2020). ACC clinical bulletin: cardiac implications of novel Wuhan coronavirus (2019-nCoV). Available at: https://www.acc.org/latest-in-cardiology/articles/2020/02/13/12/42/acc-clinical-bulletin-focuses-on-cardiac-implications-of-coronavirus-2019-ncov
  19. The Novel Coronavirus Pneumonia Emergency Response Epidemiology Team. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19): China, 2020 (2020). China CDC Weekly, 2 (8), 113–122.
  20. Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y. et. al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 395 (10223), 507–513. doi: http://doi.org/10.1016/s0140-6736(20)30211-7
  21. Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T. et. al. (2020). Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. doi: http://doi.org/10.1001/jamacardio.2020.1017
  22. Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F. et. al. (2020). Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology. doi: htts://doi.org/10.1001/jamacardio.2020.0950
  23. Kwong, J. C., Schwartz, K. L., Campitelli, M. A., Chung, H., Crowcroft, N. S., Karnauchow, T. et. al. (2018). Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection. New England Journal of Medicine, 378 (4), 345–353. doi: http://doi.org/10.1056/nejmoa1702090
  24. Madjid, M., Miller, C. C., Zarubaev, V. V., Marinich, I. G., Kiselev, O. I., Lobzin, Y. V. et. al. (2007). Influenza epidemics and acute respiratory disease activity are associated with a surge in autopsy-confirmed coronary heart disease death: results from 8 years of autopsies in 34 892 subjects. European Heart Journal, 28 (10), 1205–1210. doi: http://doi.org/10.1093/eurheartj/ehm035
  25. Madjid, M., Connolly, A. T., Nabutovsky, Y., Safavi-Naeini, P., Razavi, M., Miller, C. C. (2019). Effect of High Influenza Activity on Risk of Ventricular Arrhythmias Requiring Therapy in Patients With Implantable Cardiac Defibrillators and Cardiac Resynchronization Therapy Defibrillators. The American Journal of Cardiology, 124 (1), 44–50. doi: http://doi.org/10.1016/j.amjcard.2019.04.011
  26. Kytömaa, S., Hegde, S., Claggett, B., Udell, J. A., Rosamond, W., Temte, J. et. al. (2019). Association of Influenza-like Illness Activity With Hospitalizations for Heart Failure. JAMA Cardiology, 4 (4), 363–369. doi: http://doi.org/10.1001/jamacardio.2019.0549
  27. Vardeny, O., Solomon, S. D. (2017). Influenza vaccination: a one-shot deal to reduce cardiovascular events. European Heart Journal, 38 (5), 334–337. doi: http://doi.org/10.1093/eurheartj/ehw560
  28. ESC Guidance for the Diagnosis and Management of CV Disease during the COVID-19 Pandemic (2020). Available at: https://www.escardio.org/Education/COVID-19-and-Cardiology/ESC-COVID-19-Guidance
  29. Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z. et. al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet, 395 (10229), 1054–1062. doi: http://doi.org/10.1016/s0140-6736(20)30566-3
  30. Spyropoulos, A. C., Ageno, W., Barnathan, E. S. (2020). Hospital-based use of thromboprophylaxis in patients with COVID-19. The Lancet, 395 (10234), e75. doi: http://doi.org/10.1016/s0140-6736(20)30926-0

Published

2020-05-31

How to Cite

Kopytsya, M., Rodionova, I., Tytarenko, N., Hilova, Y., Kutya, I., & Kobets, A. (2020). Features of the cardiovascular system lesion in patients with COVID-19. ScienceRise: Medical Science, (3 (36), 4–12. https://doi.org/10.15587/2519-4798.2020.204011

Issue

Section

Medical Science