Endothelium condition and role of immunocompetent cells in atherosclerosis development as a cause of ischemic stroke

Authors

DOI:

https://doi.org/10.15587/2519-4798.2020.220202

Keywords:

atherosclerosis, endothelium, immunocompetent cells, macrophages, lymphocytes, ischemic stroke, CD4, CD8, CD20, CD68, CD31

Abstract

The aim. To determine the state of the cerebral vascular endothelium and the role of immunocompetent cells in the ischemic stroke development on the background of atherosclerosis.

Materials and methods. We studied cerebral vessels of 50 deaths with ischemic cerebral infarctions, 50 – with severe cerebral atherosclerosis without CVD (cerebrovascular disease) manifestation and 50 deaths, whose cause of death was not related to CVD and atherosclerosis (control group). Histological preparations of vessels were stained with hematoxylin-eosin and Masson Trichrome, and also immunohistochemical study was conducted using CD31/PECAM-1 (Endothelial Cell Marker) Ab-1, CD4 (CD4 Ab-8), CD8 (SP 16), CD20 (CD20 Ab-1) CD68 and (CD68/Macrophage Marker Ab-4) markers.

Results. Under ischemic strokes and severe atherosclerosis the cerebral vessels endothelium acquires structural changes in form of rupture, desquamation and exfoliation, formation of desquamated endothelial cells clusters. Speaking of endothelial damage, it should not be supposed that changes should occur at the macroscopic level only, endothelial damage at the cellular level shall be sufficient enough. Immunocompetent cells are of key importance in atherosclerosis development; adhesion on the luminal surface of arteries, presence of a large number of these cells under the endothelium and of more mature macrophages in the intima depth indicates the influx of these cells, which actively potentiate atherosclerosis formation, from the blood into the artery wall.

Conclusions. Disorders of the endothelial lining with changes in endothelial cells morphology contribute to the atherosclerotic plaque development. Lymphocytes and macrophages form the molecular basis of many important processes, including the inflammatory response and the immune response

Author Biography

Nataliia Chuiko, Ivano-Frankivsk National Medical University Halytska str., 2, Ivano-Frankivsk, Ukraine, 76018

PhD, Assistant

Department of Pathological Anatomy

References

  1. Zinchenko, O. M., Mishchenko, T. S. (2016). Stan nevrolohichnoi sluzhby v Ukraini v 2015 rotsi. Kharkiv, 23.
  2. Zozulia, I. S., Zozulia, A. I. (2011). Epidemiolohiia tserebrovaskuliarnykh zakhvoriuvan v Ukraini. Ukrainskyi medychnyi chasopys, 5, 38–41.
  3. Mishchenko, T. S. (2010). Analiz epidemiolohii tserebrovaskuliarnykh khvorob v Ukraini. Sudynni zakhvoriuvannia holovnoho mozku, 3, 2–11.
  4. Mischenko, T. S. (2017). Epidemiologiia tserebrovaskuliarnykh zabolevanii i organizatsiia pomoschi bolnym s mozgovym insultom v Ukraine. Ukrainskii vіsnik psikhonevrologіi, 25 (90), 22–24.
  5. Moshenska, O. P. (2011). Fatalnyi ishemichnyi insult: osoblyvosti naihostrishoho periodu. Ukrainskyi medychnyi chasopys, 1 (81), 29–35.
  6. Fartushna, O. Ye., Vinychuk, S. M. (2015). Vyiavlennia ta usunennia vaskuliarnykh chynnykiv ryzyku – vazhlyvyi napriamok pervynnoi profilaktyky tranzytornykh ishemichnykh atak ta/chy insultu. Ukrainskyi medychnyi chasopys, 1, (105), 23–27.
  7. Bobryshev, Iu. V., Karagodin, V. N., Kovalevskaia, Zh. I. et. al. (2010). Kletochnye mekhanizmy ateroskleroza: vrozhdennii immunitet i vospalenie. Fundamentalnye nauki i praktika, 1 (4), 140–148.
  8. Shimada, K. (2009). Immune system and atherosclerotic disease. Heterogeneity of Leukocyte Subsets Participating in the Pathogenesis of Atherosclerosis. Circulation Journal, 73 (6), 994–1001. doi: http://doi.org/10.1253/circj.cj-09-0277
  9. Gotsman, I., Gupta, R., Lichtman, A. H. (2007). The Influence of the Regulatory T Lymphocytes on Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 27 (12), 2493–2495. doi: http://doi.org/10.1161/atvbaha.107.153064
  10. Schafer, A., Bauersachs, J. (2008). Endothelial Dysfunction, Impaired Endogenous Platelet Inhibition and Platelet Activation in Diabetes and Atherosclerosis. Current Vascular Pharmacology, 6 (1), 52–60. doi: http://doi.org/10.2174/157016108783331295
  11. George, A. L., Bangalore-Prakash, P., Rajoria, S., Suriano, R., Shanmugam, A., Mittelman, A., Tiwari, R. K. (2011). Endothelial progenitor cell biology in disease and tissue regeneration. Journal of Hematology & Oncology, 4 (1), 24. doi: http://doi.org/10.1186/1756-8722-4-24
  12. Münzel, T., Sinning, C., Post, F., Warnholtz, A., Schulz, E. (2008). Pathophysiology, diagnosis and prognostic implications of endothelial dysfunction. Annals of Medicine, 40 (3), 180–196. doi: http://doi.org/10.1080/07853890701854702
  13. Ammirati, E., Moroni, F., Magnoni, M., Camici, P. G. (2015). The role of T and B cells in human atherosclerosis and atherothrombosis. Clinical & Experimental Immunology, 179 (2), 173–187. doi: http://doi.org/10.1111/cei.12477
  14. Jones Buie, J. N., Oates, J. C. (2014). Role of Interferon Alpha in Endothelial Dysfunction: Insights Into Endothelial Nitric Oxide Synthase–Related Mechanisms. The American Journal of the Medical Sciences, 348 (2), 168–175. doi: http://doi.org/10.1097/maj.0000000000000284
  15. Vanhoutte, P. M. (2009). Endothelial Dysfunction. Circulation Journal, 73 (4), 595–601. doi: http://doi.org/10.1253/circj.cj-08-1169
  16. Regina, C., Panatta, E., Candi, E., Melino, G., Amelio, I., Balistreri, C. R. et. al. (2016). Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases. Mechanisms of Ageing and Development, 159, 14–21. doi: http://doi.org/10.1016/j.mad.2016.05.003

Downloads

Published

2020-12-25

How to Cite

Chuiko, N. (2020). Endothelium condition and role of immunocompetent cells in atherosclerosis development as a cause of ischemic stroke. ScienceRise: Medical Science, (6 (39), 15–22. https://doi.org/10.15587/2519-4798.2020.220202

Issue

Section

Medical Science