Pediatric surgical sepsis: diagnostics and intensive therapy
DOI:
https://doi.org/10.15587/2519-4798.2021.250239Keywords:
pediatric sepsis, balanced crystalloids, respiratory support, septic shockAbstract
The aim: Optimization of diagnostics and schemes of pathogenetic intensive therapy of surgical sepsis in children based on clinical and laboratory criteria and bacteriological monitoring.
Materials and methods: The research period is 2018-2020. The object of the study (n=73) – children with surgical pathology (widespread peritonitis, bacterial destruction of the lungs, post-traumatic brain hematomas, abdominal trauma, etc.). Research methods: microbiological monitoring to determine the sensitivity of the microorganism to antibiotics was carried out before and at the stages of treatment (sputum, urine, wound, bronchoalveolar lavage, tracheal aspirate, blood, contents from drainages, wound surface). Determination of the sensitivity of the isolated strains to antibiotics was carried out by the disk-diffusion method. To determine predictors of sepsis in surgical patients, clinical (mean arterial pressure (mAP), heart rate (HR), respiratory rate (RR), SpO2, etc. and laboratory parameters on days 1–2 (up to 48 hours) of sepsis identification, days 4 and 8 of intensive therapy. Procalcitonin was determined by immunofluorescence on a Triage® MeterPro analyzer (Biosite Diagnostics, USA). Blood gases and electrolytes were analyzed using a Stat Profile CCX analyzer (Nova Biomedical, USA).
Results: studies have shown the effectiveness of complex intensive care in 86.3 % of cases. Mortality was found in 13.7 % of cases. Patients with severe surgical pathology died: widespread peritonitis, severe TBI + coma with irreversible neurological disorders, urosepsis against the background of chronic renal failure, after repeated surgical interventions, due to the development of refractory septic shock (SS).
Conclusions. Early diagnosis of sepsis, rational early ABT under the control of microbiological monitoring, non-aggressive infusion therapy with early prescription of vasopressors (SS) with constant monitoring of the child's main life support organs contribute to an improvement in sepsis outcomes and a decrease in mortality
References
- Rudnov, V. A., Kulabukhov, V. V. (2015). Sepsis and teragnostics on the way to personalized medicine. Bulletin of Anesthesiology and Reanimatology, 6, 60–67.
- Vincent, J.-L., Martin, G. S., Levy, M. M. (2016). qSOFA does not replace SIRS in the definition of sepsis. Critical Care, 20 (1). doi: http://doi.org/10.1186/s13054-016-1389-z
- Mironov, P. I., Lekmanov, A. U. (2013). Diagnostic and therapeutic aspects of sepsis in pediatrics from the point surviving Sepsis Campa. Russian Bulletin of Pediatric Surgery, Anesthesiology and Reanimatology, 3 (2), 38–47.
- Weiss, S. L., Fitzgerald, J. C., Pappachan, J., Wheeler, D., Jaramillo-Bustamante, J. C., Salloo, A. et. al. (2015). Global Epidemiology of Pediatric Severe Sepsis: The Sepsis Prevalence, Outcomes, and Therapies Study. American Journal of Respiratory and Critical Care Medicine, 191 (10), 1147–1157. doi: http://doi.org/10.1164/rccm.201412-2323oc
- Dugani, S., Kissoon, N. (2017). Global advocacy needed for sepsis in children. Journal of Infection, 74, S61–S65. doi: http://doi.org/10.1016/s0163-4453(17)30193-7
- Plunkett, A., Tong, J. (2015). Sepsis in children. BMJ, 350 (10), h3017. doi: http://doi.org/10.1136/bmj.h3017
- Souza, D. C. de, Brandão, M. B., Piva, J. P. (2018). From the International Pediatric Sepsis Conference 2005 to the Sepsis-3 Consensus. Revista Brasileira de Terapia Intensiva, 30 (1). doi: http://doi.org/10.5935/0103-507x.20180005
- Machado, F., de Souza, D. (2018). Epidemiology of Pediatric Septic Shock. Journal of Pediatric Intensive Care, 8 (1), 3–10. doi: http://doi.org/10.1055/s-0038-1676634
- Tan, B., Wong, J. J.-M., Sultana, R., Koh, J. C. J. W., Jit, M., Mok, Y. H., Lee, J. H. (2019). Global Case-Fatality Rates in Pediatric Severe Sepsis and Septic Shock. JAMA Pediatrics, 173 (4), 352–261. doi: http://doi.org/10.1001/jamapediatrics.2018.4839
- Lekmаnov, А. U., Mironov, P. I., Rudnov, V. А., Kulаbukhov, V. V. (2018). modern definitions and principles of intensive care of sepsis in children. Messenger of anesthesiology and resuscitation, 15 (4), 61–69. doi: http://doi.org/10.21292/2078-5658-2018-15-4-61-69
- Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M. et. al. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315 (8), 801–810. doi: http://doi.org/10.1001/jama.2016.0287
- Matics, T. J., Pinto, N. P., Sanchez-Pinto, L. N. (2019). Association of Organ Dysfunction Scores and Functional Outcomes Following Pediatric Critical Illness*. Pediatric Critical Care Medicine, 20 (8), 722–727. doi: http://doi.org/10.1097/pcc.0000000000001999
- Schlapbach, L. J., Straney, L., Bellomo, R., MacLaren, G., Pilcher, D. (2017). Prognostic accuracy of age-adapted SOFA, SIRS, PELOD-2, and qSOFA for in-hospital mortality among children with suspected infection admitted to the intensive care unit. Intensive Care Medicine, 44 (2), 179–188. doi: http://doi.org/10.1007/s00134-017-5021-8
- Dellinger, R. P., Levy, M. M., Rhodes, A., Annane, D., Gerlach, H. et. al. (2013). Surviving Sepsis Campaign: International Guidelines for Management of Severe Sepsis and Septic Shock, 2012. Intensive Care Medicine, 39 (2), 165–228. doi: http://doi.org/10.1007/s00134-012-2769-8
- Emr, B. M., Alcamo, A. M., Carcillo, J. A., Aneja, R. K., Mollen, K. P. (2018). Pediatric Sepsis Update: How Are Children Different? Surgical Infections, 19 (2), 176–183. doi: http://doi.org/10.1089/sur.2017.316
- Wheeler, D. S., Wong, H. R., Zingarelli, B. (2011). Pediatric Sepsis – Part I: “Children are not small adults”. The Open Inflammation Journal, 4, 4–15. doi: http://doi.org/10.2174/1875041901104010004
- Wheeler, D. S. (2011). Pediatric Sepsis: Markers, Mechanisms, and Management. The Open Inflammation Journal, 4 (1), 1–3. doi: http://doi.org/10.2174/1875041901104010001
- Velkov, V. V. (2012). Presepsin – the new highly effective biomarker of sepsis. Clinical and laboratory consultation, 3 (41), 64–70.
- Dewi, R., Somasetia, D. H., Risan, N. A. (2016). Procalcitonin, C-Reactive Protein and its Correlation with Severity Based on Pediatric Logistic Organ Dysfunction-2 (PELOD-2) Score in Pediatric Sepsis. American Journal of Epidemiology and Infectious Disease, 4 (3), 64–67.
- Agyeman, P. K. A., Schlapbach, L. J., Giannoni, E., Stocker, M., Posfay-Barbe, K. M., Heininger, U. et. al. (2017). Epidemiology of blood culture-proven bacterial sepsis in children in Switzerland: a population-based cohort study. The Lancet Child & Adolescent Health, 1 (2), 124–133. doi: http://doi.org/10.1016/s2352-4642(17)30010-x
- Sabirov, D. M., Satvaldieva, E. A. (2013). Prophylactic and therapeutic application of fluoroquinolones in surgery infection. Bulletin of emergency medicine, 2, 91–94. Available at: https://cyberleninka.ru/article/n/primenenie-ftorhinolonov-v-profilaktike-i-lechenii-hirurgicheskoy-infektsii
- Kuo, K.-C., Yeh, Y.-C., Chiu, I.-M., Tang, K.-S., Su, C.-M., Huang, Y.-H. (2020). The clinical features and therapy of community-acquired gram negative bacteremia in children less than three years old. Pediatrics & Neonatology, 61 (1), 51–57. doi: http://doi.org/10.1016/j.pedneo.2019.05.009
- Boeddha, N. P., Schlapbach, L. J., Driessen, G. J., Herberg, J. A., Rivero-Calle, I. et. al. (2018). Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: a prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Critical Care, 22 (1). doi: http://doi.org/10.1186/s13054-018-2052-7
- Hasan, G. M., Al-Eyadhy, A. A., Temsah, M.-H. A., Al-Haboob, A. A., Alkhateeb, M. A., Al-Sohime, F. (2018). Feasibility and efficacy of sepsis management guidelines in a pediatric intensive care unit in Saudi Arabia: a quality improvement initiative. International Journal for Quality in Health Care, 30 (8), 587–593. doi: http://doi.org/10.1093/intqhc/mzy077
- Oda, K., Matsuo, Y., Nagai, K., Tsumura, N., Sakata, Y., Kato, H. (2000). Sepsis in children. Pediatrics International, 42 (5), 528–533. doi: http://doi.org/10.1046/j.1442-200x.2000.01281.x
- Gupta, N., Richter, R., Robert, S., Kong, M. (2018). Viral Sepsis in Children. Frontiers in Pediatrics, 6. doi: http://doi.org/10.3389/fped.2018.00252
- Henriquez-Camacho, C., Losa, J. (2014). Biomarkers for Sepsis. BioMed Research International, 2014, 1–6. doi: http://doi.org/10.1155/2014/547818
- Medeiros, D. N. M., Ferranti, J. F., Delgado, A. F., de Carvalho, W. B. (2015). Colloids for the Initial Management of Severe Sepsis and Septic Shock in Pediatric Patients. Pediatric Emergency Care, 31 (11), e11–e16. doi: http://doi.org/10.1097/pec.0000000000000601
- Balamuth, F., Weiss, S. L., Neuman, M. I., Scott, H., Brady, P. W., Paul, R. et. al. (2014). Pediatric Severe Sepsis in U.S. Children’s Hospitals. Pediatric Critical Care Medicine, 15 (9), 798–805. doi: http://doi.org/10.1097/pcc.0000000000000225
- Schlapbach, L. J., Kissoon, N. (2018). Defining Pediatric Sepsis. JAMA Pediatrics, 172 (4), 313–314. doi: http://doi.org/10.1001/jamapediatrics.2017.5208
- Lekmanov, A. U., Mironov, P. I. (2020). Pediatric sepsis – time to reach agreement. Russian Bulletin of Perinatology and Pediatrics, 65 (3), 131–137. doi: http://doi.org/10.21508/1027-4065-2020-65-3-131-137
- Davis, A. L., Carcillo, J. A., Aneja, R. K., Deymann, A. J., Lin, J. C., Nguyen, T. C. et. al. (2017). American College of Critical Care Medicine Clinical Practice Parameters for Hemodynamic Support of Pediatric and Neonatal Septic Shock. Critical Care Medicine, 45 (6), 1061–1093. doi: http://doi.org/10.1097/ccm.0000000000002425
- Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R. et. al. (2017). Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Medicine, 43 (3), 304–377. doi: http://doi.org/10.1007/s00134-017-4683-6
- Nazaretyan, V. V., Lukach, V. N., Kulikov, A. V. (2017). The Effectiveness of Combined Use of Antioxidant and Glutamine in Abdominal Sepsis. General Reanimatology, 13 (2), 52–60. doi: http://doi.org/10.15360/1813-9779-2017-2-52-60
- Maltsev, D. V. (2016). Immunoglobulin therapy of sepsis. Hirurgiya Ukrainy, 2, 120–130.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Elmira Satvaldieva, Gulchehra Ashurova, Otabek Fayziev, Abdumalik Djalilov
This work is licensed under a Creative Commons Attribution 4.0 International License.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.