Hormonal background in young men with epilepsy: the influence of pathology and treatment

Authors

DOI:

https://doi.org/10.15587/2519-4798.2022.262067

Keywords:

epilepsy, testosterone, progesterone, prolactin, estradiol, relationship, young men, treatment, antiseizures medications, carbamazepine, valproic acid, levetiracetam, oxcarbazepine

Abstract

The study examined the effect of some antiepileptic medications and the disease itself on the hormonal background of young men.

The aim of the study was to examine the effect of some antiepileptic drugs and the disease itself on the hormonal background of young men.

Methods: This study involved 80 male patients aged 18-44 years. All patients were divided into 4 groups depending on the monotherapy received: carbamazepine (CBZ), valproic acid (VA), levetiracetam (LEV) and oxcarbazepine (OXC). Twenty healthy males aged 18-44 years (31.30 ± 4.07), who met the inclusion criteria, were included in the study as a control group. Venous blood samples (5 mL) were collected in heparinized tubes between 07:00 and 08:00 am after a fasting period of 8 hours for measurement of serum hormones. The levels of estradiol, progesterone, testosterone, and prolactin were determined by chemiluminescence analysis.

Results: epilepsy and sexual hormones abnormalities are strictly linked. Moreover, the use of many ASMs (in particular, CBZ, VPA, LEV and OXC) can contribute to these abnormalities in men with epilepsy. Over time, these alterations may result in diminished potency and fertility.

Conclusions: the ASMs' therapy may lead to dysregulation of sex hormones and sexual dysfunction in male patients with epilepsy. The use of the liver enzyme inducing AEDs, such as carbamazepine, which increases serum sex hormone binding globulin (SHBG) concentrations. This increase leads to diminished bioactivity of testosterone, which may result in diminished potency and thus reduced fertility. Men taking valproic acid have significantly higher dehydroepiandrosterone levels and lower gonadotropin concentration. This must be considered for the selection of antiepileptic drugs in young male patients. However, the effect of both the disease itself and ASMs’ therapy on hormones in young men requires further research

Author Biography

Anna Voitiuk, Kharkiv Medical Academy of Postgraduate Education

Postgraduate Student

Department of Neurology and Child Neurology

References

  1. Fiest, K. M., Sauro, K. M., Wiebe, S., Patten, S. B., Kwon, C.-S., Dykeman, J. et. al. (2016). Prevalence and incidence of epilepsy. Neurology, 88 (3), 296–303. doi: http://doi.org/10.1212/wnl.0000000000003509
  2. Ministry of Health of Ukraine. Available at: http://www.moz.gov.ua
  3. Bachevalier, J., Málková, L., Mishkin, M. (2021). Effects of selective neonatal temporal lobe lesions on socioemotional behavior in infant rhesus monkeys (Macaca mulatta). Behavioral Neuroscience, 115 (3), 545–559. doi: http://doi.org/10.1037/0735-7044.115.3.545
  4. Woolley, C. S.; Schwartzkroin, P. A. (2009). Hormones and epilepsy. Encyclopedia of Basic Epilepsy Research. Academic Press/Elsevier, 495–501. doi: http://doi.org/10.1016/b978-012373961-2.00217-4
  5. Członkowska, A, Ciesielska, A, Joniec, I. (2018). Influence of estrogens on neurodegenerative processes. Medical Science Monitor, 9 (10), 247–256.
  6. Boczek, T., Lisek, M., Ferenc, B., Wiktorska, M., Ivchevska, I., Zylinska, L. (2015). Region-specific effects of repeated ketamine administration on the presynaptic GABAergic neurochemistry in rat brain. Neurochemistry International, 91, 13–25. doi: http://doi.org/10.1016/j.neuint.2015.10.005
  7. Wallis, C. J., Luttge, W. G. (1980). Influence of estrogen and progesterone on glutamic acid decarboxylase activity in discrete regions of rat brain. Journal of Neurochemistry, 34, 609–613. doi: http://doi.org/10.1111/j.1471-4159.1980.tb11187.x
  8. Reddy, D. S. (2013). Neuroendocrine aspects of catamenial epilepsy. Hormones and Behavior, 63, 254–266. doi: http://doi.org/10.1016/j.yhbeh.2012.04.016
  9. Balthazart, J., Choleris, E., Remage-Healey, L. (2018). Steroids and the brain: 50 years of research, conceptual shifts and the ascent of non-classical and membrane-initiated actions. Hormones and Behavior, 99, 1–8. doi: http://doi.org/10.1016/j.yhbeh.2018.01.002
  10. McEwen, B. S., Milner, T. A. (2017). Understanding the broad influence of sex hormones and sex differences in the brain. Journal of Neuroscience Research, 95 (1-2), 24–39. doi: http://doi.org/10.1002/jnr.23809
  11. Johansson, F., Carlsson, H. A., Rasmussen, A., Yeo, C. H., Hesslow, G. (2015). Activation of a Temporal Memory in Purkinje Cells by the mGluR7 Receptor. Cell Reports, 13 (9), 1741–1746. doi: http://doi.org/10.1016/j.celrep.2015.10.047
  12. Smith, S. S., Waterhouse, B. D., Woodward, D. J. (1987). Sex steroid effects on extrahypothalamic CNS. II. Progesterone, alone and in combination with estrogen, modulates cerebellar responses to amino acid neurotransmitters. Brain Research, 422, 52–62. doi: http://doi.org/10.1016/0006-8993(87)90539-7
  13. Solntseva, E. I., Bukanova, J. V., Skrebitsky, V. G., Kudova, E. (2022). Pregnane neurosteroids exert opposite effects on GABA and glycine-induced chloride current in isolated rat neurons. Hippocampus, 32 (7), 552–563. doi: http://doi.org/10.1002/hipo.23449
  14. Fisher, R. S. (2016). Serum prolactin in seizure diagnosis: Glass half-full or half-empty? Neurology: Clinical Practice, 6 (2), 100–101. doi: http://doi.org/10.1212/cpj.0000000000000228
  15. Anderson, G. D. (2004). Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology, 63 (10Suppl 4), 53–58. doi: http://doi.org/10.1212/wnl.63.10_suppl_4.s3
  16. Beydoun, A., DuPont, S., Zhou, D., Matta, M., Nagire, V., Lagae, L. (2020). Current role of carbamazepine and oxcarbazepine in the management of epilepsy. Seizure, 83, 251–263. doi: http://doi.org/10.1016/j.seizure.2020.10.018
  17. Elger, C., Bialer, M., Falcão, A., Vaz-da-Silva, M., Nunes, T., Almeida, L., Soares-da-Silva, P. (2015). Pharmacokinetics and tolerability of eslicarbazepine acetate and oxcarbazepine at steady state in healthy volunteers. Epilepsia, 54 (8), 1453–1461. doi: http://doi.org/10.1111/epi.12242
  18. Peng, Q., Ma, M., Gu, X., Hu, Y., Zhou, B. (2021). Evaluation of Factors Impacting the Efficacy of Single or Combination Therapies of Valproic Acid, Carbamazepine, and Oxcarbazepine: A Longitudinal Observation Study. Frontiers in Pharmacology, 12, 641512. doi: http://doi.org/10.3389/fphar.2021.641512
  19. Røste, L. S., Taubøll, E., Mørkrid, L., Bjørnenak, T., Saetre, E. R., Mørland, T., Gjerstad, L. (2015). Antiepileptic drugs alter reproductive endocrine hormones in men with epilepsy. European Journal of Neurology, 12 (2), 118–124. doi: http://doi.org/10.1111/j.1468-1331.2004.00899.x
  20. Kandilli, B., Ugur Kaplan, A. B., Cetin, M., Taspinar, N., Ertugrul, M. S., Aydin, I. C., Hacimuftuoglu A. (2020). Carbamazepine and levetiracetam-loaded PLGA nanoparticles prepared by nanoprecipitation method: in vitro and in vivo studies. Drug Development and Industrial Pharmacy, 46 (7), 1063–1072. doi: http://doi.org/10.1080/03639045.2020.1769127
  21. Wood, M., Daniels, V., Provins, L., Wolff, C., Kaminski, R. M., Gillard, M. (2020). Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Interactions with Synaptic Vesicle 2 Proteins and the GABAA Receptor. Journal of Pharmacology and Experimental Therapeutics, 372 (1), 1–10. doi: http://doi.org/10.1124/jpet.119.261149
  22. Kuba, R., Pohanka, M., Zákopcan, J., Novotná, I., Rektor, I. (2006). Sexual dysfunctions and blood hormonal profile in men with focal epilepsy. Epilepsia, 47, 2135–2140. doi: http://doi.org/10.1111/j.1528-1167.2006.00851.x
  23. Reis, R. M., de Angelo, A. G., Sakamoto, A. C., Ferriani, R. A., Lara, L. A. (2013). Altered sexual and reproductive functions in epileptic men taking carbamazepine. The Journal of Sexual Medicine, 10, 493–499. doi: http://doi.org/10.1111/j.1743-6109.2012.02951.x
  24. Hamed, S. A. (2016). The effect of epilepsy and antiepileptic drugs on sexual, reproductive and gonadal health of adults with epilepsy. Expert Review of Clinical Pharmacology, 9 (6), 807–819. doi: http://doi.org/10.1586/17512433.2016.1160777
  25. Ocek, L., Tarhan, H., Uludağ, F. İ., Sarıteke, A., Köse, C., Colak, A. et. al. (2018). Evaluation of sex hormones and sperm parameters in male epileptic patients. Acta Neurologica Scandinavica, 137 (4), 409–416. doi: http://doi.org/10.1111/ane.12892

Downloads

Published

2022-07-29

How to Cite

Voitiuk, A. (2022). Hormonal background in young men with epilepsy: the influence of pathology and treatment. ScienceRise: Medical Science, (4(49), 44–49. https://doi.org/10.15587/2519-4798.2022.262067

Issue

Section

Medical Science