Study of the influence of GLP-1 receptor agonists on the metabolic activity of the intestinal microbiota in patients with type 2 DM

Authors

DOI:

https://doi.org/10.15587/2519-4798.2023.297535

Keywords:

diabetes, obesity, raGLP-1, intestinal microbiota, short-chain fatty acids, trimethylamine-N-oxide

Abstract

The aim: to investigate the peculiarities of the metabolic activity of the intestinal microbiota in patients with type 2 diabetes under the influence of glucagon-like peptide-1 receptor agonist therapy.

Materials and methods: 21 patients with type 2 diabetes mellitus were included in the study, the average age was 57.2±8.53 years (M±SD), the HbA1c level was 8.29±0.88 % (M±SD). Patients were prescribed raGLP-1 at the maximum tolerated dose for 6 months. Before and after the course of treatment, indicators of body composition were determined by the bioelectrical impedance method (TANITA BC-545N analyzer, Japan), characteristics of carbohydrate metabolism and the lipid spectrum of blood serum, as well as the concentration of GLP-1, trimethylamine-N-oxide (TMAO) by the immunoenzymatic method, of short-chain fatty acids (SCFA) by the method of chromatographic research.

Results. After 6 months of therapy with liraglutide against the background of a statistically significant decrease in fasting blood glucose and HbA1c levels (p<0.05), a decrease in body mass index and waist circumference (p<0.05), a decrease in the content of visceral (p<0.05 ) and total fat (p<0.05) in patients with type 2 diabetes, there was a decrease in the concentration of TMAO in blood serum (p<0.05) and an increase in the concentration of SCFA: acetic, propionic (p<0.05) in the coprofiltrate and a tendency to increase in the level of butyric acids. Data analysis also established an increase in the concentration of endogenous GLP-1 in the blood (p<0.05).

Conclusions. The detected changes in microbial metabolites may indicate a positive effect of raGLP-1 on the composition of the intestinal microbiota and its metabolic activity in patients with T2DM, which in turn contributes to the improvement of endogenous secretion of incretins

Supporting Agency

  • Ministry of Health of Ukraine, within the framework of the National Development Program "Investigate the phenotypic hormonal and metabolic features of the use of incretin mimetics and sodium inhibitors of the dependent glucose co-transporter-2 in patients with type 2 diabetes in the post-epidemic period" (No. 538, dated 01.2022) and according to the agreement on research cooperation between the SU "V.P. Komisarenko Institute of Endocrinology and Metabolism of the National Academy of Sciences of Ukraine" and the SU "Institute of Gastroenterology of the National Academy of Sciences of Ukraine" dated May 3, 2023

Author Biographies

Olesia Zinych, State Institution ‘V. P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Science of Ukraine’

Doctor of Medical Sciences, Leading Researcher, Head of Department

Department of Age Endocrinology and Clinical Pharmacology

Yurii Stepanov, State Institution “Institute of Gastroenterology of National Academy of Medical Sciences of Ukraine”

Doctor of Medical Sciences, Professor, Corresponding Member of National Academy of Sciences of Ukraine, Director

Kateryna Shyshkan-Shyshova, State Institution ‘V. P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Science of Ukraine’

Junior Researcher

Department of Age Endocrinology and Clinical Pharmacology

Inna Klenina, State Institution “Institute of Gastroenterology of National Academy of Medical Sciences of Ukraine”

PhD, Head of Sector

Research Sector

Nataliia Kushnarova, State Institution ‘V. P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Science of Ukraine’

PhD, Senior Researcher

Department of Age Endocrinology and Clinical Pharmacology

Alla Kovalchuk, State Institution ‘V. P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Science of Ukraine’

PhD, Leading Researcher

Department of Age Endocrinology and Clinical Pharmacology

Olha Prybyla, State Institution ‘V. P. Komisarenko Institute of Endocrinology and Metabolism of National Academy of Medical Science of Ukraine’

Junior Researcher

Department of Age Endocrinology and Clinical Pharmacology

References

  1. Sanusi, H. (2009). The role of incretin on diabetes mellitus. Acta Med Indones, 41 (4), 205–212.
  2. Nauck, M. A., Quast, D. R., Wefers, J., Meier, J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46, 101102. doi: https://doi.org/10.1016/j.molmet.2020.101102
  3. Sharma, M., Li, Y., Stoll, M. L., Tollefsbol, T. O. (2020). The Epigenetic Connection Between the Gut Microbiome in Obesity and Diabetes. Frontiers in Genetics, 10. doi: https://doi.org/10.3389/fgene.2019.01329
  4. Mao, Z.-H., Gao, Z.-X., Liu, D.-W., Liu, Z.-S., Wu, P. (2023). Gut microbiota and its metabolites – molecular mechanisms and management strategies in diabetic kidney disease. Frontiers in Immunology, 14. doi: https://doi.org/10.3389/fimmu.2023.1124704
  5. Silva, Y. P., Bernardi, A., Frozza, R. L. (2020). The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11. doi: https://doi.org/10.3389/fendo.2020.00025
  6. Rosli, N. S. A., Abd Gani, S., Khayat, M. E., Zaidan, U. H., Ismail, A., Abdul Rahim, M. B. H. (2022). Short-chain fatty acids: possible regulators of insulin secretion. Molecular and Cellular Biochemistry, 478 (3), 517–530. doi: https://doi.org/10.1007/s11010-022-04528-8
  7. Pingitore, A., Gonzalez‐Abuin, N., Ruz‐Maldonado, I., Huang, G. C., Frost, G., Persaud, S. J. (2018). Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes, Obesity and Metabolism, 21 (2), 330–339. doi: https://doi.org/10.1111/dom.13529
  8. Ma, Q., Li, Y., Li, P., Wang, M., Wang, J., Tang, Z. et al. (2019). Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomedicine & Pharmacotherapy, 117, 109138. doi: https://doi.org/10.1016/j.biopha.2019.109138
  9. Perry, R. J., Peng, L., Barry, N. A., Cline, G. W., Zhang, D., Cardone, R. L. et al. (2016). Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature, 534 (7606), 213–217. doi: https://doi.org/10.1038/nature18309
  10. Rattarasarn, C. (2018). Dysregulated lipid storage and its relationship with insulin resistance and cardiovascular risk factors in non-obese Asian patients with type 2 diabetes. Adipocyte, 7 (2), 71–80. doi: https://doi.org/10.1080/21623945.2018.1429784
  11. Pathak, P., Xie, C., Nichols, R. G., Ferrell, J. M., Boehme, S., Krausz, K. W. et al. (2018). Intestine farnesoid X receptor agonist and the gut microbiota activate G‐protein bile acid receptor‐1 signaling to improve metabolism. Hepatology, 68 (4), 1574–1588. doi: https://doi.org/10.1002/hep.29857
  12. Boini, K. M., Hussain, T., Li, P.-L., Koka, S. S. (2017). Trimethylamine-N-Oxide Instigates NLRP3 Inflammasome Activation and Endothelial Dysfunction. Cellular Physiology and Biochemistry, 44 (1), 152–162. doi: https://doi.org/10.1159/000484623
  13. Chen, M., Zhu, X., Ran, L., Lang, H., Yi, L., Mi, M. (2017). Trimethylamine‐N‐Oxide Induces Vascular Inflammation by Activating the NLRP3 Inflammasome Through the SIRT3‐SOD2‐mtROS Signaling Pathway. Journal of the American Heart Association, 6 (9). doi: https://doi.org/10.1161/jaha.117.006347
  14. Shanmugham, M., Bellanger, S., Leo, C. H. (2023). Gut-Derived Metabolite, Trimethylamine-N-oxide (TMAO) in Cardio-Metabolic Diseases: Detection, Mechanism, and Potential Therapeutics. Pharmaceuticals, 16 (4), 504. doi: https://doi.org/10.3390/ph16040504
  15. León-Mimila, P., Villamil-Ramírez, H., Li, X. S., Shih, D. M., Hui, S. T., Ocampo-Medina, E. et al. (2021). Trimethylamine N-oxide levels are associated with NASH in obese subjects with type 2 diabetes. Diabetes & Metabolism, 47 (2), 101183. doi: https://doi.org/10.1016/j.diabet.2020.07.010
  16. Dehghan, P., Farhangi, M. A., Nikniaz, L., Nikniaz, Z., Asghari‐Jafarabadi, M. (2020). Gut microbiota‐derived metabolite trimethylamine N‐oxide (TMAO) potentially increases the risk of obesity in adults: An exploratory systematic review and dose‐response meta‐ analysis. Obesity Reviews, 21 (5). doi: https://doi.org/10.1111/obr.12993
  17. Asadi, A., Shadab Mehr, N., Mohamadi, M. H., Shokri, F., Heidary, M., Sadeghifard, N., Khoshnood, S. (2022). Obesity and gut–microbiota–brain axis: A narrative review. Journal of Clinical Laboratory Analysis, 36 (5). doi: https://doi.org/10.1002/jcla.24420
  18. World Obesity Atlas 2022 (2022). World Obesity Federation. London. Available at: https://s3-eu-west-1.amazonaws.com/wof-files/World_Obesity_Atlas_2022.pdf Last accessed: 11.04.2023
  19. Zhao, G., Nyman, M., Åke Jönsson, J. (2006). Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomedical Chromatography, 20 (8), 674–682. doi: https://doi.org/10.1002/bmc.580
  20. Tian, S., Xu, Y. (2015). Association of sarcopenic obesity with the risk of all‐cause mortality: A meta‐analysis of prospective cohort studies. Geriatrics & Gerontology International, 16 (2), 155–166. doi: https://doi.org/10.1111/ggi.12579
  21. Wang, Q., Zheng, D., Liu, J., Fang, L., Li, Q. (2019). Skeletal muscle mass to visceral fat area ratio is an important determinant associated with type 2 diabetes and metabolic syndrome. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 12, 1399–1407. doi: https://doi.org/10.2147/dmso.s211529
  22. Cani, P. D., Lecourt, E., Dewulf, E. M., Sohet, F. M., Pachikian, B. D., Naslain, D. et al. (2009). Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. The American Journal of Clinical Nutrition, 90 (5), 1236–1243. doi: https://doi.org/10.3945/ajcn.2009.28095
  23. Yamane, S., Inagaki, N. (2017). Regulation of glucagon‐like peptide‐1 sensitivity by gut microbiota dysbiosis. Journal of Diabetes Investigation, 9 (2), 262–264. doi: https://doi.org/10.1111/jdi.12762
  24. Sun, M., Wu, W., Liu, Z., Cong, Y. (2016). Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology, 52 (1), 1–8. doi: https://doi.org/10.1007/s00535-016-1242-9
  25. Heiss, C. N., Olofsson, L. E. (2017). Gut Microbiota-Dependent Modulation of Energy Metabolism. Journal of Innate Immunity, 10 (3), 163–171. doi: https://doi.org/10.1159/000481519
  26. Naghipour, S., Cox, A. J., Peart, J. N., Du Toit, E. F., Headrick, J. P. (2020). TrimethylamineN-oxide: heart of the microbiota–CVD nexus? Nutrition Research Reviews, 34 (1), 125–146. doi: https://doi.org/10.1017/s0954422420000177
  27. Nemet, I., Saha, P. P., Gupta, N., Zhu, W., Romano, K. A., Skye, S. M. et al. (2020). A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell, 180 (5), 862-877.e22. doi: https://doi.org/10.1016/j.cell.2020.02.016
  28. Maffei, S., Forini, F., Canale, P., Nicolini, G., Guiducci, L. (2022). Gut Microbiota and Sex Hormones: Crosstalking Players in Cardiometabolic and Cardiovascular Disease. International Journal of Molecular Sciences, 23 (13), 7154. doi: https://doi.org/10.3390/ijms23137154
  29. Mutalub, Y. B., Abdulwahab, M., Mohammed, A., Yahkub, A. M., AL-Mhanna, S. B., Yusof, W., Tang, S. P., Rasool, A. H. G., Mokhtar, S. S. (2022). Gut Microbiota Modulation as a Novel Therapeutic Strategy in Cardiometabolic Diseases. Foods, 11 (17), 2575. doi: https://doi.org/10.3390/foods11172575
Study of the influence of GLP-1 receptor agonists on the metabolic activity of the intestinal microbiota in patients with type 2 DM

Downloads

Published

2023-11-30

How to Cite

Zinych, O., Stepanov, Y., Shyshkan-Shyshova, K., Klenina, I., Kushnarova, N., Kovalchuk, A., & Prybyla, O. (2023). Study of the influence of GLP-1 receptor agonists on the metabolic activity of the intestinal microbiota in patients with type 2 DM. ScienceRise: Medical Science, (6 (57), 24–30. https://doi.org/10.15587/2519-4798.2023.297535

Issue

Section

Medical Science