Phenotypic features of generated dendritic cells in patients with pancreatic cancer immunotherapy

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.90950

Keywords:

pancreatic cancer, immunotherapy, anticancer vaccines, dendritic cells, phenotypic features

Abstract

Aim. The aim of our research was to study quantitative and phenotypic features of dendritic cells (DC) from peripheral blood monocytes for immunotherapy in patients with pancreatic cancer (PC).

Materials and methods. DC were used as natural adjuvants in the composition of anticancer vaccines in complex treatment of PC patients. DC phenotypic maturity was estimated using flow cytofluorometry.

Results and discussion. The analysis of DC quantity and vitality has shown that in all PC patients it managed to grow a sufficient number of viable DC for immunotherapy. The expression level of CD83, CD86 и HLA-DR differentiation antigens on DC generated in vitro significantly increased during immunotherapy in PC patients.

Conclusion. The obtained data can be put into the basis for development of the protocols of DC use as natural adjuvants in the composition of anticancer vaccines in the standard schemes of PC patients’ treatment

Author Biographies

Наталья Николаевна Храновская, National cancer institute Lomonosova str., 33/43, Kyiv, Ukraine, 03022

PhD, Senior Researcher

Laboratory of Experimental Oncology

Оксана Владимировна Скачкова, National cancer institute Lomonosova str., 33/43, Kyiv, Ukraine, 03022

PhD

Laboratory of Experimental Oncology

Сергей Владимирович Земсков, Bohomolets National Medical University T. Shevchenka blvd., 13, Kyiv, Ukraine, 01601

PhD, Associate professor

Department of General Surgery № 1

References

  1. Ryan, D. P., Hong, T. S., Bardeesy, N. (2014). Pancreatic Adenocarcinoma. New England Journal of Medicine, 371 (11), 1039–1049. doi: 10.1056/nejmra1404198
  2. Kirkwood, J. M., Butterfield, L. H., Tarhini, A. A., Zarour, H., Kalinski, P., Ferrone, S. (2012). Immunotherapy of cancer in 2012. CA: A Cancer Journal for Clinicians, 62 (5), 309–335. doi: 10.3322/caac.20132
  3. Sabado, R., Bhardwaj, N. (2015). Cancer immunotherapy: Dendritic-cell vaccines on the move. Nature, 519 (7543), 300–301. doi: 10.1038/nature14211
  4. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C., Bhardwaj, N. (2001). Antigen-Specific Inhibition of Effector T Cell Function in Humans after Injection of Immature Dendritic Cells. The Journal of Experimental Medicine, 193 (2), 233–238. doi: 10.1084/jem.193.2.233
  5. Figdor, C. G., de Vries, I. J. M., Lesterhuis, W. J., Melief, C. J. M. (2004). Dendritic cell immunotherapy: mapping the way. Nature Medicine, 10 (5), 475–480. doi: 10.1038/nm1039
  6. Palucka, K., Banchereau, J. (2012). Cancer immunotherapy via dendritic cells. Nature Reviews Cancer, 12 (4), 265–277. doi: 10.1038/nrc3258
  7. Hettihewa, L. (2011). Prolonged expression of MHC class I – peptide expression in bone marrow derived retrovirus transfected matured dendritic cells by continuous centrifugation in the presence of IL-4. The Indian Journal of Medical Research, 134 (5), 672–678. doi: 10.4103/0971-5916.90993
  8. Dudek, A. M., Martin, S., Garg, A. D., Agostinis, P. (2013). Immature, Semi-Mature, and Fully Mature Dendritic Cells: Toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Frontiers in Immunology, 4, 438–452. doi: 10.3389/fimmu.2013.00438
  9. Richter, C., Thieme, S., Bandoła, J., Laugsch, M., Anastassiadis, K., Brenner, S. (2013). Generation of Inducible Immortalized Dendritic Cells with Proper Immune Function In Vitro and In Vivo. PLoS ONE, 8 (4), e62621. doi: 10.1371/journal.pone.0062621
  10. Anguille, S., Smits, E. L., Bryant, C., Van Acker, H. H., Goossens, H., Lion, E. et. al. (2015). Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacological Reviews, 67 (4), 731–753. doi: 10.1124/pr.114.009456
  11. Amigorena, S., Savina, A. (2010). Intracellular mechanisms of antigen cross presentation in dendritic cells. Current Opinion in Immunology, 22 (1), 109–117. doi: 10.1016/j.coi.2010.01.022
  12. Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F. et. al. (2010). Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. New England Journal of Medicine, 363 (5), 411–422. doi: 10.1056/nejmoa1001294
  13. Johnson, L. A., Jackson, D. G. (2008). Cell Traffic and the Lymphatic Endothelium. Annals of the New York Academy of Sciences, 1131 (1), 119–133. doi: 10.1196/annals.1413.011
  14. Hranovskaja, N. N., Krjachok, I. A., Ganul, V. L., Vorob'eva, L. I., Grinevich, Ju. A., Orel, V. Je., Skachkova, O. V. et. al. (2014). Razrabotka, obosnovanie i ocenka jeffektivnosti protivoopuholevoj vakcinoterapii na osnove dendritnyh kletok u bol'nyh so zlokachestvennymi novoobrazovanijami. Klinicheskaja onkologija, 2 (14), 62–70.
  15. Okamoto, M. (2016). Dendritic cell-based vaccine for pancreatic cancer in Japan. World Journal of Gastrointestinal Pharmacology and Therapeutics, 7 (1), 133–138. doi: 10.4292/wjgpt.v7.i1.133

Published

2017-01-31

How to Cite

Храновская, Н. Н., Скачкова, О. В., & Земсков, С. В. (2017). Phenotypic features of generated dendritic cells in patients with pancreatic cancer immunotherapy. ScienceRise: Medical Science, (1 (9), 10–14. https://doi.org/10.15587/2519-4798.2017.90950

Issue

Section

Medical Science