Rare trisomies: frequency, range, lethality at embryonic and fetal stages of prenatal development

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.94385

Keywords:

Chromosomal abnormalities, rare trisomy, mortality, Anembryonic gestation at the embryonic stage, fetal period

Abstract

Aim. The study of primary population frequency, mortality and share of rare autosomal trisomies at different stages of fetal development for the further determination of the expected proportion of false negative results at chromosome abnormalities (CA) selective diagnostics using during reproductive losses and prenatal diagnostics.

Materials and methods. Karyotyping of 1808 samples of missed abortion concept products, 1572 induced abortions, 1329 chorionic villus biopsy samples, 2240 placenta biopsy samples, and 6120 samples of amniotic fluid (13069 total) was carried out.

Results. The share of Т21,18,13 at pre-embryonic stage was only 6.33 %, while the share of “rare” trisomies was 93.67 %. In the first trimester the mean share of rare trisomies (Т1-12,14-17,19,20,22 ) was 41.13%; among prenatally diagnosed 11-14 weeks fetuses was 3.01 %, 15-22 weeks fetuses – 1.68 %, and after 23 weeks – 2.22 %. It means that the mean share of rare trisomies at prenatal diagnostics can be 2.3 % among newborns.

Conclusion. The share of false negative results at autosomal trisomies detection using commercial selective test systems covering Т13,Т18,Т21,Т9 and Т22 in missed abortion group can be 41 %, and at prenatal diagnostics within 11-23 weeks – 2.3 %

Author Biographies

Niсkolay Veropotvelyan, «Multiregional Centre of Medical Genetics and Prenatal Diagnostics» Vizvolennya sq., 3A, Krivoy Rog, Ukraine, 50000

PhD, Honored Doctor of Ukraine

Head doctor

Daria Nesterchuk, «Multiregional Centre of Medical Genetics and Prenatal Diagnostics» Vizvolennya sq., 3A, Krivoy Rog, Ukraine, 50000

Head of Laboratory, Doctor Laboratory Geneticist 

References

  1. Boue, J., Boue, A., Lazar, P. (1975). Retrospective and prospective epidemiological studies of 1500 karyotyped spontaneous human abortions. Teratology, 12 (1), 11–26. doi: 10.1002/tera.1420120103
  2. Kline, J., Stein, Z. (1987). Epidemiology of Chromosomal Anomalies in Spontaneous Abortion: Prevalence, Manifestation and Determinants. Spontaneous and Recurrent Abortion. Chicago: Oxford Blackwell Scientific, 29–50.
  3. Menasha, J., Levy, B., Hirschhorn, K., Kardon, N. B. (2005). Incidence and spectrum of chromosome abnormalities in spontaneous abortions: New insights from a 12-year study. Genetics in Medicine, 7 (4), 251–263. doi: 10.1097/01.gim.0000160075.96707.04
  4. Hassold, T., Chen, N., Funkhouser, J., Jooss, T., Manuel, B., Matsuura, J. et. al. (1980). A cytogenetic study of 1000 spontaneous abortions. Annals of Human Genetics, 44 (2), 151–164. doi: 10.1111/j.1469-1809.1980.tb00955.x
  5. Carr, D. H. (1965). Chromosome studies in spontaneous abortions. J. Obstet. Gynecol, 26, 308–326.
  6. Veropotveljan, M. P., Kodunov, L. O., Veropotveljan, P. M., Nesterchuk, D. O., Goruk, P. S., Kostynec', V. M. (2012). Vyznachennja pervynnoi' populjacijnoi' chastoty hromosomnoi' patologii' i rann'oi' embrional'noi' letal'nosti v Ukrai'ni. Zdorov'e zhenshhiny, 9, 108–114.
  7. Mikamo, K. (1970). Anatomic and chromosomal anomalies in spontaneous abortion. American Journal of Obstetrics and Gynecology, 106 (2), 243–254. doi: 10.1016/0002-9378(70)90269-3
  8. Boue, J. G. (1970). Les aberrations chromosommiques dans les avortemens spontanes humains. Press Med., 78 (14), 635–641.
  9. Jacobs, P. A., Hassold, T. J. (1995). The Origin of Numerical Chromosome Abnormalities. Advances in Genetics, 101–133. doi: 10.1016/s0065-2660(08)60332-6
  10. Papp, Z. (1990). Obstetric Genetics. Budapest:Academia Kiado, 627.
  11. Baranov, V. S., Kuznecova, T. V. (2006). Citogenetika jembrional'nogo razvitija cheloveka. Sankt-Peterburg: Izdatel'stvo N-L, 640.
  12. Zimmermann, B., Hill, M., Gemelos, G., Demko, Z., Banjevic, M., Baner, J. et. al. (2012). Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenatal Diagnosis, 32 (13), 1233–1241. doi: 10.1002/pd.3993
  13. Nicolaides, K. H., Syngelaki, A., Gil, M., Atanasova, V., Markova, D. (2013). Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenatal Diagnosis, 33 (6), 575–579. doi: 10.1002/pd.4103
  14. Jackson, J., Hamar, B., Lazar, E., Lim, K., Rodriguez, D., Stock, K. et. al. (2014). Nuchal translucency measurement plus non-invasive prenatal testing to screen for aneuploidy in a community-based average-risk population. Ultrasound in Obstetrics & Gynecology, 44 (4), 491–491. doi: 10.1002/uog.13424
  15. Evangelidou, P., Alexandrou, A., Moutafi, M., Ioannides, M., Antoniou, P., Koumbaris, G. et. al. (2013). Implementation of High Resolution Whole Genome Array CGH in the Prenatal Clinical Setting: Advantages, Challenges, and Review of the Literature. BioMed Research International, 2013, 1–14. doi: 10.1155/2013/346762
  16. Boon, E. M. J., Faas, B. H. W. (2013). Benefits and limitations of whole genome versus targeted approaches for noninvasive prenatal testing for fetal aneuploidies. Prenatal Diagnosis, 33 (6), 563–568. doi: 10.1002/pd.4111
  17. Prenatal screening and diagnosis of chromosomal and genetic conditions in the fetus in pregnancy (2016). The Royal Australian and New Zealand College of Obstetricians and Gynaecologists, 37.
  18. Veropotveljan, M. P., Nesterchuk, D. O., Kodunov, L. O. (2012). Pat. No. 77426 UA. Sposib vyznachennja kariotypu plodu pry spontannyh abortah ta mertvonarodzhenni. MPK: A61B 5/00, G01N 33/00. No. u201210129; declareted: 23.08.2012.; published: 11.02.2013, Bul. No. 3.
  19. Gulejuk, N. L., Zastavna, D. V., Gnatejko, O. Z., Bezkorovajna, G. M. (2005). Metody kul'tyvuvannja amniocytiv. Kyiv, 18.
  20. Watt, J. L., Templeton, A. A., Messinis, I., Bell, L., Cunningham, P., Duncan, R. O. (1987). Trisomy 1 in an eight cell human pre-embryo. Journal of Medical Genetics, 24 (1), 60–64. doi: 10.1136/jmg.24.1.60
  21. Hanna, J. S., Shires, P., Matile, G. (1997). Trisomy 1 in a clinically recognized pregnancy. American Journal of Medical Genetics, 68 (1), 98–98. doi: 10.1002/(sici)1096-8628(19970110)68:1<98::aid-ajmg20>3.3.co;2-i
  22. Dunn, T. M., Grunfeld, L., Kardon, N. B. (2001). Trisomy 1 in a clinically recognized IVF pregnancy. American Journal of Medical Genetics, 99 (2), 152–153. doi: 10.1002/1096-8628(2000)9999:999<00::aid-ajmg1130>3.0.co;2-p
  23. Banzai, M., Sato, S., Matsuda, H., Kanasugi, H. (2004). Trisomy 1 in a case of a missed abortion. Journal of Human Genetics, 49 (7). doi: 10.1007/s10038-004-0164-1
  24. Wellesley, D., Dolk, H., Boyd, P. A., Greenlees, R., Haeusler, M., Nelen, V. et. al. (2012). Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. European Journal of Human Genetics, 20 (5), 521–526. doi: 10.1038/ejhg.2011.246

Published

2017-02-28

How to Cite

Veropotvelyan, N., & Nesterchuk, D. (2017). Rare trisomies: frequency, range, lethality at embryonic and fetal stages of prenatal development. ScienceRise: Medical Science, (2 (10), 45–51. https://doi.org/10.15587/2519-4798.2017.94385

Issue

Section

Medical Science