Development of prototype for user interface of information system

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.103177

Keywords:

hierarchical clustering, mind map, information overload, user interface

Abstract

For intellectual activity in the time of information explosion, it is necessary to explore a lot of documents obtained from open sources of the Internet. The object of research is the interface and structure of the information system. This system allows to reduce the processed information flow by filtering documents. The filtration is based on the documents set clustering. This method is seldom used due to the complexity of the user interface.

To solve this problem, it is proposed to use the mind map view for visualizing the clustering results. The cluster hierarchy automatically creates the initial graph of the map nodes. The binary graph of the clustering results will automatically transform to the n-ary graph tree. The n is no more than the Yngve-Miller's number and should be determined by the user. The user also controls the mapping of clusters to the mind map, using SQL-queries.

The structure of the information system is determined. This system uses free software solutions as its integral parts. Neural network subsystem is required to adapt to the specific user needs.

A prototype of the mind map user interface is developed. It is made in JavaScript and is represented as a web page. A list of the main use cases for implementation in the MVP (the minimum viable product) is given.

Author Biography

Alexey Dubinsky, State Establishment «Dnipropetrovsk Medical Academy», 9, Vladimir Vernadsky str., Dnipro, Ukraine, 49044

PhD, Associate Professor

Department of Medical-biological Physics and Informatics

References

  1. Econ Stats: All Economic Indicators for All Countries. Economy Watch. Available: http://www.economywatch.com/economic-statistics/economic-indicators/. Last accessed: 20.03.2017.
  2. Manning, C. D., Raghavan, P., Schutze, H. (2008). Introduction to Information Retrieval. Cambridge: Cambridge University Press, 482. doi:10.1017/cbo9780511809071
  3. Tanatar, N. V., Fedorchuk, A. G. (2008). Intellektual'nye poiskovo-analiticheskie sistemy monitoringa SMI. Biblioteki Natsional'nyh akademii nauk: problemy funktsionirovaniia, tendentsii razvitiia, 6, 205–219.
  4. Lande, D. V. (2010). Instrumentarii analitika. Telekom, 4, 36–40.
  5. Smith, C. (23.05.2017). How Many People Use the Top Social Media, Apps & Services? DMR. Available: http://expandedramblings.com/?s=How+Many+People+Use+the+Top+Social+Media%2C+Apps+%26+Services%3F+
  6. Brin, S., Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems, 30 (1-7), 107–117. doi:10.1016/s0169-7552(98)00110-x
  7. Enge, E., Spencer, S., Fishkin, R., Stricchiola, J. (2009). The Art of SEO: Mastering Search Engine Optimization (Theory in Practice). O'Reilly Media, 608.
  8. Liu, Y., Gao, B., Liu, T.-Y., Zhang, Y., Ma, Z., He, S., Li, H. (2008). BrowseRank. Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval – SIGIR’08, 451–458. doi:10.1145/1390334.1390412
  9. Su, X., Khoshgoftaar, T. M. (2009). A Survey of Collaborative Filtering Techniques. Advances in Artificial Intelligence, 2009, 1–19. doi:10.1155/2009/421425
  10. Turdakov, D., Astrakhantsev, N., Nedumov, Y., Sysoev, A., Andrianov, I., Mayorov, V., Fedorenko, D., Korshunov, A., Kuznetsov, S. (2014). Texterra: A Framework for Text Analysis. Proceedings of the Institute for System Programming of RAS, 26 (1), 421–438. doi:10.15514/ispras-2014-26(1)-18
  11. DeVito, M. A. (2016). From Editors to Algorithms. Digital Journalism, 1–21. doi:10.1080/21670811.2016.1178592
  12. Wang, Z., Crowcroft, J. (1996). Prefetching in World Wide Web. Proceedings of GLOBECOM’96. 1996 IEEE Global Telecommunications Conference, 28–32. doi:10.1109/glocom.1996.586110
  13. Aggarwal, C. C., Zhai, C. X. (2012). A Survey of Text Clustering Algorithms. Mining Text Data. Springer US, 77–128. doi:10.1007/978-1-4614-3223-4_4
  14. Dubinsky, A. (15.03.2005). Method for the clusterization of a set of objects by using a reference. Patent of Ukraine № 72720, MPK G06F 7/00, G06F 17/30, G06F 7/16. Appl. № 20031212875. Filed 29.12.2003. Bull. № 3. Available: http://uapatents.com/9-72720-sposib-klasterizuvannya-naboru-obehktiv-z-vikoristannyam-zrazka.html
  15. Lewis, J., Fowler, M. (2014, March 25). Microservices: a definition of this new architectural term. Martin Fowler. Available: http://martinfowler.com/articles/microservices.html
  16. Khan, M. S., Khor, S. W. (2004). Web document clustering using a hybrid neural network. Applied Soft Computing, 4 (4), 423–432. doi:10.1016/j.asoc.2004.02.003
  17. Du, K.-L. (2010). Clustering: A neural network approach. Neural Networks, 23 (1), 89–107. doi:10.1016/j.neunet.2009.08.007
  18. Chen, H., Houston, A. L., Sewell, R. R., Schatz, B. R. (1998). Internet browsing and searching: User evaluations of category map and concept space techniques. Journal of the American Society for Information Science, 49 (7), 582–603. doi:10.1002/(sici)1097-4571(19980515)49:7<582::aid-asi2>3.0.co;2-x
  19. Canas, A. J., Coffey, J. W., Carnot, M. J., Feltovich, P., Hoffman, R. R., Feltovich, J., Novak, J. D. (2003). A Summary of Literature Pertaining to the Use of Concept Mapping Techniques and Technologies for Education and Performance Support. Report to the Chief of Naval Education and Training. Pensacola, Florida: The Institute for Human and Machine Cognition, 108.
  20. Spangler, S., Kreulen, J. T., Lessler, J. (2002). MindMap: utilizing multiple taxonomies and visualization to understand a document collection. Proceedings of the 35th Annual Hawaii International Conference on System Sciences, 1170–1179. doi:10.1109/hicss.2002.994039
  21. Karta uma – dlia teh, kto izuchaet Javascript. GitHub, Inc. Available: https://github.com/Imater/mindmap

Published

2017-05-30

How to Cite

Dubinsky, A. (2017). Development of prototype for user interface of information system. Technology Audit and Production Reserves, 3(2(35), 4–8. https://doi.org/10.15587/2312-8372.2017.103177

Issue

Section

Information Technologies: Original Research