Mathematical modeling of the process of fluid filtration through a multi-layer filtering element

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.109309

Keywords:

mathematical model of the liquid filtration process, porous medium, Darcy law, distributed calculations

Abstract

The paper presents a mathematical model of the fluid filtration process in a porous medium. The mathematical model of fluid filtration in a porous medium is based on the equation of continuity and the Darcy law for a hollow porous cylinder. The porous cylinder consists of three materials having different mechanical and filtration properties, made of polypropylene fibers by extrusion, consisting of seven layers.

Filtration is described by different types of research laws that establish the relationship between a velocity vector of the fluid filtration and the field of pressure. There are several ways to describe mathematically the process of filter colmatation. Present work considers a single-component model of the flow of suspension through a porous medium. An analysis of this model revealed that it can be implemented in the presence of empirical coefficients that take into account porosity of the sediment deposited on the walls of a porous space, linear functions that describe adsorption and desorption of precipitation on the pore walls, as well as functional dependences for the permeability of filter and the viscosity of suspension.

An efficient technique to calculate complex models is to apply parallel programming methods, which make it possible to split calculations into streams performed on the basis of supercomputers, clusters, and other high-performance computing systems.

The proposed method for organizing distributed calculations for a finite-element filter model could be used to construct a hydrodynamic model of the filtration process, as well as its program implementation, which is planned in the future.

Author Biographies

Anastasia Vecherkovskaya, National Aviation University, 1, Komarova ave., Kyiv, Ukraine, 03058

Senior Lecturer

Department of Software Engineering

Svitlana Popereshnyak, Taras Shevchenko National University of Kyiv, 24, Vandy Vasilevskaya str., Kyiv, Ukraine, 04116

PhD, Associate Professor

Department of Software Systems and Technologies

References

  1. Parmakli, I. I., Poslavskii, S. A. (2012). Rasprostranenie volny zagriazneniia pri fil'tratsii suspenzii v poristoi srede. Materialy mezhdunarodnoi konferentsii «Sovremennye problemy matematiki i eio prilozheniia v estestvennyh naukah i informatsionnyh tehnologiiah». Kharkiv, 84.
  2. Szczepanski, C., Aune, M., Schneider, J.; assignee: Osmonics Inc. (August 22, 2002). Tieffilterpatrone und methode und vorrichtung zu deren herstellung. Patent DE 69331102 T2. Appl. No. DE1993631102. Filed August 19, 1993. Available: http://www.google.com.pg/patents/DE69331102T2
  3. Whitney, A., Williamson, M., Clendenning, A., Hibbard, R., Griffin, M.; assignee: Pall Corp. (August 28, 2003). Koaleszenzelement. Patent DE 69723714 D1. Appl. No. DE1997623714. Filed September 30, 1997. Available: http://www.google.com.pg/patents/DE69331102T2
  4. Calbau, B., Dadri, D. J.; assignee: Donaldson Company, Inc. (May 20, 2002). Construction of filter (versions) and method of filtration. Patent RU2182509C2. Appl. No. RU2000109355A. Filed September 9, 1997. Available: https://patents.google.com/patent/RU2182509C2/en
  5. Troian, D. A.; assignee: Scientific and Productive Firm «Rubicon», Private Enterprise «Unifilter». (June 20, 2008). Fil'troval'nyi element dlia zhidkih i gazovyh sred. Patent RU 2326716; MPK VO1D 39/16 (2006.01). Appl. No. 2006124622/15. Filed January 20, 2008. Bull. No. 17, 5.
  6. Vecherkovskaya, A., Popereshnyak, S. (2017). Comparative analysis of mathematical models forming filter elements. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH). IEEE. doi:10.1109/memstech.2017.7937545
  7. Basniev, K. S., Dmitriev, N. M., Rozenberg, G. D. (2005). Neftegazovaia gidromehanika. Moscow-Izhevsk: Institute for Computer Research, 544.
  8. Selivanov, V. V. (1999). Mehanika razrusheniia deformiruemogo tela. Vol. 2. Prikladnaia mehanika sploshnyh sred. Moscow: MSTU n. a. N. E. Bauman, 420.
  9. Hasanov, M. M., Krasnov, V. A., Korotovskih, V. A. (2007). Opredelenie optimal'nogo perioda otrabotki nagnetatel'noi skvazhiny na neft'. Nauchno-tehnicheskii Vestnik OAO «NK «Ros-neft», 5, 19–22.
  10. Darcy, H. (1856). Les fontaines publiques de la ville de Dijon. Paris, 647.
  11. Charnyi, I. A. (2006). Podzemnaia gidrogazodinamika. Moscow-Izhevsk: SIC «Regular and chaotic dynamics», Institute for Computer Research, 436.
  12. Andrianov, I. V., Barantsev, R. G., Manevich, L. I. (2004). Asimptoticheskaia matematika i sinergetika: put' k tselostnoi prostote. Moscow: Editorial URSS, 304.
  13. Wriggers, P. (2008). Nonlinear Finite Element Methods. Springer Berlin Heidelberg, 560. doi:10.1007/978-3-540-71001-1
  14. Sementsov, H. N., Davydenko, L. I. (2014). Development of informative support for automatic antisurge protection system and regulation of gas pumping plant. Eastern-European Journal of Enterprise Technologies, 4(11(70)), 20-24. doi:10.15587/1729-4061.2014.26311
  15. Vambol, S., Vambol, V., Kondratenko, O., Suchikova, Y., Hurenko, O. (2017). Assessment of improvement of ecological safety of power plants by arranging the system of pollutant neutralization. Eastern-European Journal of Enterprise Technologies, 3(10 (87)), 63–73. doi:10.15587/1729-4061.2017.102314

Published

2017-07-25

How to Cite

Vecherkovskaya, A., & Popereshnyak, S. (2017). Mathematical modeling of the process of fluid filtration through a multi-layer filtering element. Technology Audit and Production Reserves, 4(3(36), 9–13. https://doi.org/10.15587/2312-8372.2017.109309

Issue

Section

Measuring Methods in Chemical Industry: Original Research