Mathematical modeling of vibrational systems for transverse grinding by wheel periphery

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.112771

Keywords:

vibrational grinding system, motion patterns, grinding wheel

Abstract

The object of research is the vibrational systems of grinding processes. One of the problem areas of the research object is the determination of the way in which the regularities of mutual influence of the main parameters of the system's motion will be taken into account. The question of taking into account the energy dissipation in elastic elements in the study of the vibrations of an elastic system is quite complex, since internal friction depends on a number of factors whose influence is quite complex and practically not subject to direct account.

In the course of the work, analytical methods of research are used, based on the basic principles of the theory of mechanical vibrations and theoretical developments of scientists in this field.

Analytical dependences of the grinding system motion with longitudinal feed in the form of differential equations that take into account the dimensions of the «drive – machine - grinding tool – workpiece» system are obtained and determine their interdependence. This allows to conduct theoretical studies of processes to establish appropriate grinding modes.

With the use of Nielsen algorithm, the dependencies of the vibrational system motion are obtained without taking into account the roughness of the grinding wheel, profile which allows to predict the position of the grinding tool during processing at any time. This makes it possible to study in detail the conditions of the vibrational grinding system under various conditions and to develop measures to improve the efficiency of the grinding process by selecting the correct grinding conditions (feed rate, grinding wheel rotation velocity, grinding depth, etc.).

Author Biographies

Serhii Hnitko, Poltava National Technical Yuriy Kondratyuk University, 24, Pervomaisky ave., Poltava, Ukraine, 36011

PhD, Associate Professor

Department of Engineering Technology

Andrii Shpylka, Poltava National Technical Yuriy Kondratyuk University, 24, Pervomaisky ave., Poltava, Ukraine, 36011

Senior Lecturer

Department of Engineering Technology

Nikolay Shpilka, Poltava National Technical Yuriy Kondratyuk University, 24, Pervomaisky ave., Poltava, Ukraine, 36011

PhD, Associate Professor

Department of Construction Machine and Equipment

Serhii Kravchenko, Poltava National Technical Yuriy Kondratyuk University, 24, Pervomaisky ave., Poltava, Ukraine, 36011

PhD, Associate Professor

Department of Engineering Technology

References

  1. In: Reznikov, A. N. (1977). Abrazivnaia i almaznaia obrabotka materialov. Moscow: Mashinostroenie, 391.
  2. Baikalov, A. K. (1978). Vvedenie v teoriiu shlifovaniia materialov. Kyiv: Naukova dumka, 207.
  3. Burdun, G. D., Surogin, V. F., Darevskii, V. G. (1979). Metody i sredstva kontrolia kachestva almaznogo instrumenta. Moscow: Mashinostroenie, 119.
  4. Veits, V. L., Donshanskii, V. K., Chiriaev, V. I. (1959). Vynuzhdennye kolebaniia v metallorezhushchih stankah. Leningrad: Mashgiz, 287.
  5. Gusev, B. V., Deminov, A. D. et al. (1982). Udarno-vibratsionnaia tehnologiia uplotneniia betonnyh smesei. Moscow: Stroiizdat, 152.
  6. Srinivasan, K. (1986). Grinding Chatter and Vibrations. Handbook of Modern Grinding Technology, 119–169. doi:10.1007/978-1-4613-1965-8_6
  7. Hashimoto, F., Kanai, A., Miyashita, M., Okamura, K. (1984). Growing Mechanism of Chatter Vibrations in Grinding Processes and Chatter Stabilization Index of Grinding Wheel. CIRP Annals, 33 (1), 259–263. doi:10.1016/s0007-8506(07)61421-8
  8. Han, Q. K., Wen, B. C. (2008). Nonlinearity Analysis and Wavelet Package Transform of Measured Chatter Vibrations in Grinding Process. Key Engineering Materials, 359-360, 494–498. doi:10.4028/www.scientific.net/kem.359-360.494
  9. Altintas, Y. (2012). Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. Cambridge: Cambridge University Press, 336. doi:10.1017/cbo9780511843723
  10. An experimental study on chatter vibrations in grinding operations (1985). Wear, 2 (2), 161. doi:10.1016/0043-1648(58)90496-4
  11. Dudás, I. (2004). Grinding wheel profiling devices. The Theory and Practice of Worm Gear Drives, 182–199. doi:10.1016/b978-190399661-4/50008-3
  12. Ohmori, H., Takahashi, I., Bandyopadhyay, B. P. (1996). Highly Efficient Grinding of Ceramic Parts by Electrolytic In-Process Dressing (ELID) Grinding. Materials and Manufacturing Processes, 11 (1), 31–44. doi:10.1080/10426919608947459
  13. Veits, V. L., Dobroslavskii, V. L. (1962). Nekotorye voprosy dinamiki mashin s elektroprivodom. Trudy semira TMM, XXIII (91), 54–66.
  14. Kazovskii, E. Ya. (1962). Perehodnye protsessy v elektricheskih mashinah peremennogo toka. Moscow; Leningrad: AN SSSR, 624.
  15. Poturaev, V. N., Chervonenko, A. G. (1971). Dinamika vertikal'nih vibrokonveierov s uchetom vliianiem massy transportiruemogo materiala i svoistv istochnika energii. Mehanika mashin, 29-30, 25–36.
  16. Kononenko, V. O. (1964). Kolebatel'nye sistemy s ogranichennym vozbuzhdeniem. Moscow: Nauka, 256.
  17. Panovko, Ya. G., Gubanova, I. I. (1979). Ustoichivost' i kolebaniia uprugih sistem. Moscow: Nauka, 384.
  18. Karpov, N. A. (1970). Ustoichivost' form statsionarnyh dvizhenii vibriruiushchih organov putevyh i stroitel'nyh mashin. Moscow: Transport, 168.
  19. Mazur, N. P., Vnukov, Yu. N., Grabchenko, A. I., Dobroskok, V. L., Zaloga, V. A., Novoselov, Yu. K., Yakubov, F. Ya.; In: Mazur, N. P., Grabchenko, A. I. (2013). Osnovy teorii rezaniia materialov. Ed. 2. Kharkiv: NTU «KhPI», 534.

Published

2017-09-21

How to Cite

Hnitko, S., Shpylka, A., Shpilka, N., & Kravchenko, S. (2017). Mathematical modeling of vibrational systems for transverse grinding by wheel periphery. Technology Audit and Production Reserves, 5(1(37), 9–12. https://doi.org/10.15587/2312-8372.2017.112771

Issue

Section

Mechanical Engineering Technology: Original Research