Analysis of environmental, legislative and technological aspects of the choice of non-aqueous working bodies for power plants

Authors

  • Roman Gerasimov Stock Company «G. M. Krzhizhanovsky Power Engineering Institute», 19, Leninsky ave., Moscow, Russian Federation, 119991, Russian Federation https://orcid.org/0000-0002-0037-1763
  • Sergey Kolotukhin National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250, Russian Federation https://orcid.org/0000-0001-8257-4830
  • Igor Mazurin National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250, Russian Federation https://orcid.org/0000-0002-5604-5510
  • Andrey Sukhikh National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250, Russian Federation https://orcid.org/0000-0003-3214-8889
  • Pavel Granchenko National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250, Russian Federation https://orcid.org/0000-0003-1832-9114

DOI:

https://doi.org/10.15587/2312-8372.2017.119336

Keywords:

power plant, working bodies of energy cycles, stability of substances, sulfur hexafluoride

Abstract

In the conducted researches there is a task of a choice of a working body for a heat power circuit of power plants on non-aqueous working substances with possibility of considerable increase of power efficiency of a cycle and safety of operation of plants in view of restrictions of the Montreal and Kyoto protocols. In an experimental study of the possibility of using fluorocarbon working bodies and SF6 as working bodies of energy cycles, positive results have been obtained both in terms of increasing the safety of operation of power plants and increasing their reliability, and in terms of energy efficiency. However, their use as working bodies was delayed by the extremely long lifetime in the atmosphere by the Lifetime criterion.

When calculating material balances of fluorocarbons and SF6 gas in the atmosphere based on the new IPCC-2013 data, a discrepancy of four orders of magnitude of the Lifetime criterion is found with the initial data given by IPCC-94. Based on these data, restrictions are introduced on the use of these substances within the framework of the commitment of the countries participating in the Kyoto Protocol to the UNFCCC. This gives grounds for the use of fluorocarbons and SF6 gas without restrictions on the basis of the greenhouse hazard, since the lifetime of these substances in the atmosphere does not exceed 2 years.

The use of fluorocarbons and SF6 gas as working bodies of energy cycles will significantly reduce energy consumption in the refrigeration industry and will significantly increase the efficiency in generating electricity at TPPs and NPPs, while reducing energy consumption by 20–25 %.

Author Biographies

Roman Gerasimov, Stock Company «G. M. Krzhizhanovsky Power Engineering Institute», 19, Leninsky ave., Moscow, Russian Federation, 119991

Junior Researcher, Postgraduate Student

Laboratory for Studying the Properties of Working Bodies of Energy Cycles 

Sergey Kolotukhin, National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250

Lead Engineer, Head of Educational Laboratory

Department of Theoretical Foundations of Heat Engineering

Igor Mazurin, National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250

Doctor of Technical Sciences, Professor

Department of Theoretical Foundations of Heat Engineering

Andrey Sukhikh, National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250

Doctor of Technical Sciences, Professor

Department of Theoretical Foundations of Heat Engineering

Pavel Granchenko, National Research University «Moscow Power Engineering Institute», 14, Krasnokazarmennaya str., Moscow, Russian Federation, 111250

Postgraduate Student

Department of Theoretical Foundations of Heat Engineering

References

  1. Gohshtein, D. P., Smirnov, G. F., Kirov, V. S. (1964). Nekotorye osobennosti parogazovyh shem s nevodianymi parami. Energetika, 11, 20–24.
  2. Moisan et Lebeau, C. R. (1900). Sur un nouveaucorps gazeux: leperfluorure de soufre SF6. Paris: Academie des sciences, 130.
  3. Morkin, M. S., Lemehov, V. V., Cherepnin, Yu. S. (2014). Fizicheskaia model' radioliza gazoobraznogo ftoruglerodnogo rabochego tela. Doklady tret'ei mezhdunarodnoi nauchno-tehnicheskoi konferentsii «Innovatsionnye proekty i tehnologii iadernoi energetiki». Vol. 1. OAO «NIKIET», 462–466.
  4. Maksimov, B. N., Barabanov, V. G., Serushkin, I. L. et al. (1996). Promyshlennye ftororganicheskie produkty. Ed. 2. St. Petersburg: Himiia, 544.
  5. Brown,‎ T. E.,‎ LeMay,‎ H. E., Bursten,‎ B. E., Murphy,‎ C., Woodward, P. (2011). Chemistry: The Central Science. Ed. 11. Prentice Hall, 1232.
  6. Intergovernmental Panel on Climate Change. (2014). Summary for Policymakers. Climate Change 2013 – The Physical Science Basis. Cambridge University Press, 1–30. doi:10.1017/cbo9781107415324.004
  7. Tapscott, R. E., Mather, J. D. (2000). Tropodegradable fluorocarbon replacements for ozone-depleting and global-warming chemicals. Journal of Fluorine Chemistry, 101 (2), 209–213. doi:10.1016/s0022-1139(99)00161-x
  8. Haywood, R. W. (1980). Analysis of Engineering Cycles. Elsevier, 348. doi:10.1016/c2013-0-03329-4
  9. Perelshtein, I. I., Parushin, E. B. (1984). Termodinamicheskie i teplofizicheskie svoistva rabochih veshchestv holodil'nyh mashin i teplovyh nasosov. Moscow: Liogkaia i pishchevaia promyshlennost', 232.
  10. Syvorotkin, V. L. (2002). Glubinnaia degazatsiia Zemli i global'nye katastrofy. Moscow: Geoinformtsentr, 250.
  11. Molina, M. J., Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: chlorine atom-catalysed destruction of ozone. Nature, 249 (5460), 810–812. doi:10.1038/249810a0
  12. Houghton, J. T., Meira Filho, L. G., Bruce, J., Hoesung Lee, Callander, B. A., Haites, E., Harris, N., Maskell, K. (1995). Climate Change 1994. Radiative Forcing of Climate Change and An Evaluation of the IPCCIS92 Emission Scenarios. Cambridge University Press, 340. Available at: https://www.ipcc.ch/pdf/special-reports/cc1994/climate_change_1994.pdf
  13. SF6 recycling guide. Re-use of SF6 gas in electrical power equipment and final disposal. (1997). ELECTRA, ELT_173_3, 29. Available at: https://e-cigre.org/publication/ELT_173_3-sf6-recycling-guide-re-use-of-sf6-gas-in-electrical-power-equipment-and-final-disposal
  14. Stekolnikov, I. S. (1960). Priroda dlinnoi iskry. Moscow: AN SSSR, 272.
  15. Stekolnikov, I. S., Bagirov, M. A. (1953). Issledovanie prirody dlinnoi iskry. Izvestiia AN SSSR. OTN, 2, 12–16.
  16. Toepler, M. (1906). Zur Kenntnis der Gesetze der Gleitfunkenbildung. Annalen Der Physik, 326 (12), 193–222. doi:10.1002/andp.19063261202
  17. Schonland, B. F. J. (1953). The Pilot Streamer in Lightning and the Long Spark. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 220 (1140), 25–38. doi:10.1098/rspa.1953.0169
  18. Isidorov, V. A. (1985). Organicheskaia himiia atmosfery. Leningrad: Himiia, 264.
  19. Doronin, A., Mazurin, I., Stoljarevski, A. (1995). The new cooling agents. Proceedings of the 19th International congress of refrigeration, Hague, Netherlands, August 20–25, 1995. Paris: Institut international du froid, 914.

Published

2017-11-30

How to Cite

Gerasimov, R., Kolotukhin, S., Mazurin, I., Sukhikh, A., & Granchenko, P. (2017). Analysis of environmental, legislative and technological aspects of the choice of non-aqueous working bodies for power plants. Technology Audit and Production Reserves, 6(1(38), 66–77. https://doi.org/10.15587/2312-8372.2017.119336

Issue

Section

Technology and System of Power Supply: Original Research