Development of methodology for data and knowledge warehouse design in computer systems for intellectual data processing

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.123527

Keywords:

computer system, data and knowledge warehouse, categorical-ontological model

Abstract

At present, when developing data warehouses and knowledge of computer systems, it is not possible to use one end-to-end methodology, suitable for collective work and knowledge sharing. Such methodology should be understandable and objective from the point of view of the provability and validity of models at all stages of research and design work. The object of research is development of a methodology for designing efficient data warehouses and knowledge of modern computer systems for intellectual data processing. During the development of the methodology, the categorical-ontological approach developed by the author as a metalanguage of modeling and a means for verification of the design process and its results was used. In this case, the generic ontological model is mathematically rigorous, by imposing constraints on the objects and morphisms of category theory on the concepts and relationships that are presented. As a result of the development and application of this methodology, the semantic and linguistic barriers that arise between the members of the project team in the design of data and knowledge warehouses of computer systems have been overcome. Using a categorical-ontological approach to modeling and design makes it possible to formally substantiate the subjective results of knowledge engineering and use the objects of category theory in the form of design patterns at a high level of abstraction.

Author Biography

Pavlo Sahaida, Donetsk National Technical University, 2, Shybankova sq., Pokrovsk, Donetsk region, Ukraine, 85302

PhD, Associate Professor

Department of Electronic Engineering

References

  1. Witten, I. H., Eibe, F. (Eds.) (2005). Data mining: practical machine learning tools and techniques. Ed. 2. Burlington: Morgan Kaufmann Publishers, 525.
  2. Sahaida, P. I. (2017). Modelirovaniye problemnoy oblasti komp'yuterizirovannykh informatsionnykh sistem dlya intellektual'noy obrabotki dannykh s ispol'zovaniyem inzhenerii znaniy. Naukovi pratsi DonNTU. Seriya: Obchislyuval'na tekhnika ta avtomatizatsiya, 1 (30), 78–87.
  3. Palagin, A. V., Kryvyy, S. L., Petrenko, N. G. (2012). Ontologicheskiye metody i sredstva obrabotki predmetnykh znaniy. Lugansk: ENU named after V. Dalya, 324.
  4. Sahaida, P. I. (2012). Ontologicheskiy podkhod k proyektirovaniyu baz dannykh informatsionnykh system. Sovremennoye obrazovaniye i integratsionnyye protsessy: sbornik nauchnykh rabot mezhdunarodnoy nauchno-metodicheskoy konferentsii. Kramatorsk: DGMA, 313–318.
  5. Walter, R. F. C. (1991). Categories and Computer Science. Cambridge: Cambridge Universities Press, 166.
  6. Spivak, D. I. (2014). Category theory for the sciences. MIT Press, 435.
  7. Barr, M. (1986). Models of sketches. Cashiers Topologie Geom. Differentielle, 27, 93–107.
  8. Wells, C. (1990). A generalization of the concept of sketch. Theoretical Computer Science, 70 (1), 159–178. doi:10.1016/0304-3975(90)90158-e
  9. Date, C. J. (2003). An Introduction to Database Systems. Ed. 8. Pearson, 1024.
  10. Sahaida, P. I. (2017). Kategorial'no-ontologicheskoye modelirovaniye intellektual'noy obrabotki dannykh dlya matematicheskogo obosnovaniya rezul'tatov inzhenerii znaniy. Vimiryuval'na ta obchislyuval'na tekhnika v tekhnologichnikh protsesakh, 4, 149–158.
  11. Johnson, M., Rosebrugh, R., Wood, R. J. (2002). Entity-relationship-attribute designs and sketches. Theory and Applications of Categories, 10 (3), 94–112.
  12. About Anchor Modeling. Available at: http://www.anchormodeling.com. Last accessed: 25.12.2017.
  13. Hepp, M., De Leenheer, P., De Moor, A., Sure, Y. (Eds.). (2007). Ontology Management: Semantic Web, Semantic Web Services, and Business Applications. Springer, 293.
  14. Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development. Addison Wesley Professional, 736.
  15. ISO/IEC 19502:2005. Information technology – Meta Object Facility (MOF). (2005). Available at: http://webstore.iec.ch/preview/info_isoiec19502%7Bed1.0%7Den.pdf. Last accessed: 25.12.2017.
  16. Wells, C. (2009). Sketches: Outline with References. Available at: http://www.cwru.edu/artsci/math/wells/pub/pdf/Sketch.pdf. Last accessed: 25.12.2017.
  17. Wojtowicz, R. L. (2015, September 29). A Categorical Approach to Knowledge Management. Computational Category Theory Workshop. National Institute of Standards and Technology. Available at: http://www.bakermountain.org/talks/nist.pdf. Last accessed: 25.12.2017.
  18. Sahaida, P. I. (2013). Informatsionnaya tekhnologiya i programmno-metodicheskiy kompleks dlya modelirovaniya slozhnykh obiektov proyektirovaniya s ispol'zovaniyem nechetkikh kognitivnykh kart. Visnik Donbas'koi derzhavnoi mashinobudivnoi akademii, 2, 50–58.

Published

2017-12-28

How to Cite

Sahaida, P. (2017). Development of methodology for data and knowledge warehouse design in computer systems for intellectual data processing. Technology Audit and Production Reserves, 1(2(39), 10–15. https://doi.org/10.15587/2312-8372.2018.123527

Issue

Section

Information Technologies: Original Research