Search for new biologically active compounds based on 6-methyluracil-5-sulfochloride and alcohols

Authors

  • Masud Abdo-Allah Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, 31, Vladimirska str., Rubizhne, Lugansk region, Ukraine, 93009, Ukraine https://orcid.org/0000-0002-8403-5301
  • Elena Mospanova Shupyk National Medical Academy of Postgraduate Education, 9, Dorohozhytska str., Kyiv, Ukraine, 04112, Ukraine https://orcid.org/0000-0002-6575-5135
  • Yevgeniy Popov Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, 31, Vladimirska str., Rubizhne, Lugansk region, Ukraine, 93009, Ukraine https://orcid.org/0000-0001-7941-5134
  • Alexandr Isak Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, 31, Vladimirska str., Rubizhne, Lugansk region, Ukraine, 93009, Ukraine https://orcid.org/0000-0002-9985-5011

DOI:

https://doi.org/10.15587/2312-8372.2018.124272

Keywords:

biologically active compounds, synthesis of alkyl sulfonates based on 6-methyluracil-5-sulfochloride and alcoholates, reactivity

Abstract

The object of research is the interaction of 6-methyluracil-5-sulfochloride (MUSC) with aliphatic alcohols (C1–C10) in order to obtain new methyl ether sulfate esters not described in the literature. With the help of the PAAS program, it is shown that these esters exhibit biological activity. They exhibit antioxidant properties, and can also find use as cytostatics.

One of the most problematic places in the synthesis of methyluracyl sulfonic esters is obtaining the final compounds in the most pure form and with the greatest yield. This goal is achieved by the fact that the used alcohol is previously absolute, heating it with calcium oxide or calcined copper sulfate. In the obtained absolute alcohol, the quota part of Na or K is dissolved, and after the reaction termination, the quoted portion of MUSC is added.

In the course of the studies, the principle of sulfochlorination of methyluracil is changed. In order to increase the yield and improve the quality of the final product, the reaction of methyluracil with freshly distilled chlorosulfonic acid is carried out in an inert solvent such as dichloroethane, followed by the addition of thionyl chloride.

To improve the quality of synthesized compounds and simplify the synthesis, the methyluracil used is reacted with metallic sodium or potassium to form an alcoholate. Further, the obtained alcoholate reacts with the calculated amount of the sulfochloride, forming an almost chemically pure final product.

With the help of the program, the preliminary biological activity of synthesized compounds is determined and the possibility of using the compounds obtained as cytostatics is determined. And with the help of NMR spectroscopy and elemental analysis, the composition and structure of the obtained compounds are confirmed, the data of which are given in the form of a table.

A number of new compounds not described in the literature have been obtained. This is due to the fact that the proposed method has a number of features, in particular, the use of available raw materials, the improvement of synthesis methods.

Author Biographies

Masud Abdo-Allah, Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, 31, Vladimirska str., Rubizhne, Lugansk region, Ukraine, 93009

Postgraduate Student

Department of Ecology

Elena Mospanova, Shupyk National Medical Academy of Postgraduate Education, 9, Dorohozhytska str., Kyiv, Ukraine, 04112

PhD, Associate Professor

Yevgeniy Popov, Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, 31, Vladimirska str., Rubizhne, Lugansk region, Ukraine, 93009

Doctor of Technical Sciences, Professor

Department of Ecology

Alexandr Isak, Institute of Chemical Technologies of the Volodymyr Dahl East Ukrainian National University, 31, Vladimirska str., Rubizhne, Lugansk region, Ukraine, 93009

PhD, Associate Professor

Department of General Chemistry Disciplines

References

  1. Khromov-Borisov, N. V., Karlinskaya, R. S. (1957). Sintezy i prevrashheniya proizvodnykh pirimidina. Sul'foproizvodnye tsitozina, 4-metiltsitozina i uratsila. Zhurnal obshhey khimii, 27 (9), 2518–2521.
  2. Khromov-Borisov, N. V., Karlinskaya, R. S. (1954). Sintezy i prevrashheniya proizvodnykh pirimidina. Sul'firovanie proizvodnykh pirimidina. Zhurnal obshhey khimii, 24 (8), 2212–2215.
  3. Pogorelova, I. P., Isak, A. D. (17.04.2006). Pokhіdnі 6-metil-2,4-digіdroksipіrimіdin-5-sul'fonamіdu і sposіb ikh oderzhannya. Pat. 75516 UA. MPK A61P 31/12, C07D 239/69, A61P 31/04, A61K 31/505. Appl. No. 20040806492. Filed: 03.08.2004. Bull. No. 4.
  4. Pogorelova, I. P., Orlov, V. D., Isak, A. D. (2006). Synthesis of 6-methyluracil-5-sulfonyl chloride. Russian Journal of Applied Chemistry, 79 (4), 631–633. doi:10.1134/s1070427206040240
  5. Elderfield, R. C., Prasad, R. N. (1961). Synthesis of Potential Anticancer Agents. XI. Synthesis and Reactions of Derivatives of 6-Methyluracil-5-sulfonic Acid1, 2. The Journal of Organic Chemistry, 26 (10), 3863–3867. doi:10.1021/jo01068a058
  6. Abdo-Allah, M., Shypydchenko, M. V., Isak, A. D. (25.04.2016). Sposib otrymannia 6-metyluratsyl-5-sulfokhlorydu. Pat. 106558 UA. MPK A01N 25/00, C07C 307/00, A61K 31/08. Appl. No. u 201511581. Filed: 23.11.2015. Bull. No. 8.
  7. Melnikov, N. N. (1987). Pestitsidy. Khimiya, tekhnologiya i primenenie. Moscow: Khimiya, 712.
  8. Smith, H. Q., Toukan, S. S. (25.03.1975). Halo-Substituted Cyanomethyl Benzenesulfonates. Pat. US3873591A.
  9. Fungicidal Compositions and processes using azonaphthol sulphonic acid derivatives. (10.03.1976). Pat. GB1427516A.
  10. Double salt of copper alkyl phenolsulphonate an d basic calcium – useful as agricultural germicide. (27.01.1977). Pat. DE2533102A1.
  11. Fridinger, T. L. (04.05.1976). Perfluoroalkanesulfonate ester Herbicides. Pat. US3954828A.
  12. Wegler, H. K. (1982). Chemie der Pflanzenschuetz und Schudlingsbekampfungsmittell. Vol. 8. Berlin: Springer. Verlag, 485.
  13. Jenkins, F., Hambly, A. (1961). Solvolysis of Sulphonyl Halides. I. The Hydrolysis of Aromatic Sulphonyl Chlorides in Aqueous Dioxan and Aqueous Acetone. Australian Journal of Chemistry, 14 (2), 190–212. doi:10.1071/ch9610190
  14. Linetskaya, Z. G., Sapozhnikova, N. V. (1952). Kinetika gidroliza nekotorykh sul'fokhloridov aromaticheskogo i zhirnogo ryada. Doklady AN SSSR, 6 (4), 763–766.
  15. Tommila, E., Jutila, J., Burstrom, H. (1952). Hydrolysis and Alcoholysis of Sulphonic Esters. Acta Chemica Scandinavica, 6, 844–853. doi:10.3891/acta.chem.scand.06-0844
  16. Reutov, O. A. (1964). Teoreticheskie osnovy organicheskoy khimii. Moscow: MGU, 700.
  17. Ingold, K. (1973). Teoreticheskie osnovy organicheskoy khimii. Moscow: Mir, 1056.
  18. Dneprovskiy, A. S., Temnikova, T. I. (1991). Teoreticheskie osnovy organicheskoy khimii. Leningrad: Khimiya, 560.

Published

2017-12-28

How to Cite

Abdo-Allah, M., Mospanova, E., Popov, Y., & Isak, A. (2017). Search for new biologically active compounds based on 6-methyluracil-5-sulfochloride and alcohols. Technology Audit and Production Reserves, 1(3(39), 4–8. https://doi.org/10.15587/2312-8372.2018.124272

Issue

Section

Chemical and Technological Systems: Original Research