Investigation of methods of obtaining whiskers in composite material

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.124287

Keywords:

methods of obtaining whiskers, composite materials, chemical interaction between gas and contact material

Abstract

The object of this research is various methods for obtaining whiskers in composite materials. The method of obtaining whiskers by reduction of metal halides by the example of the basic scheme of this process is investigated. And also, with the example of another scheme, the process of growing of SiC whiskers by the «vapor-liquid-solid» method is analyzed. The problematic issue of the investigation of the application of both methods is the temperature interval for carrying out the processes, which is connected with the process of recrystallization of a particular whisker. When writing the work, various methods of scientific research were used, such as the method of statistical analysis, the method of analyzing the results of research, the hypothetical deductive method and the method of generalizing the results. As a result of the in-depth review of existing ideas about some methods of obtaining whiskers in a composite material, it is shown that the application of the method of obtaining whiskers during the chemical interaction between a gas and a whisker makes it possible to obtain a high concentration of solute, which ultimately affects the structure of the crystal. When analyzing the method of obtaining «vapor-liquid-solid» whiskers, it is justified that the number of crystallization centers increases significantly, which leads to an acceleration of the crystal growth process.

Author Biographies

Sergey Artemev, National University of Civil Defense of Ukraine, 94, Chernyshevsky str., Kharkiv, Ukraine, 61000

PhD, Associate Professor, Head of the Department

Department of Occupational Safety and Technogenic and Ecological Security

Valery Shaporev, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor, Head of the Department

Department of Chemical Technique and Industrial Ecology

Bohdan Tsymbal, National University of Civil Defense of Ukraine, 94, Chernyshevsky str., Kharkiv, Ukraine, 61000

PhD, Senior Lecturer

Department of Occupational Safety and Technogenic and Ecological Security

References

  1. Givargizov, E. I. (1977). Rost nitevidnykh i plastinchatykh kristallov iz para. Moscow: Nauka, 304.
  2. Berezhkova, G. V. (1969). Nitevidnye kristally. Moscow: Gosizdat, 158.
  3. Syrkin, V. G. (1983). Karbonily metallov. Moscow: Khimiya, 200.
  4. Gribov, B. G., Domrachev, G. A., Zhuk, B. V. (1981). Osazhdenie plenok i pokrytiy razlozheniem metalloorganicheskikh soedineniy. Moscow: Nauka, 322.
  5. Gabor, B., Blocher, V. (1969). Blocher Neposredstvenno nabliudaemyi pod mikroskopom rost zheleznyh viskerov, himicheski vyrashchivaemyh iz gazovoi fazy. Journal of Applied Physics, 7, 224–226.
  6. Ivanova, V. S., Gordenko, L. K. (1964). Novye puti povysheniya prochnosti metallov. Moscow: Nauka, 118.
  7. Nitevidnye kristally i tonkie plenki. (1975). Nitevidnye kristally. Voronezh: VPI, 466.
  8. Nitevidnye kristally dlya novoy tekhniki. (1979). Voronezh: VPI, 231.
  9. Ammer, S. A., Postnikov, V. S. (1974). Nitevidnye kristally. Voronezh: Politekh. Instit., 284.
  10. Shishelova, T. I., Stepanova, N. E., Plynskaya, D. A., Belyaeva, M. A. (2009). Nitevidnye kristally. Uspekhi sovremennogo estestvoznaniya, 8, 12–13.
  11. Gudilin, E. A. (Ed.). (2007). Nitevidnye kristally. Issledovaniya i razrabotki po prioritetnomu napravleniyu razvitiya nauki, tekhnologiy i tekhniki «Industriya nanosistem i materialy. Moscow: FGU «Rossiyskiy nauchnyy tsentr «Kurchatovskiy institut».
  12. Givargizov, E. I. (1981). Teoriya rosta i metody vyrashhivaniya kristallov. Moscow: Mir, 220.
  13. Nitevidnye kristally i neferromagnitnye plenki. (1970). Part 1. Nitevidnye kristally. Voronezh: VPI, 287.
  14. Nitevidnye kristally i neferromagnitnye plenki. (1970). Part 2. Tonkie plenki. Voronezh: VPI, 300.
  15. Nomeri, M. A. K. (2011). Poluchenie i issledovanie opticheskikh svoystv poluprovodnikovykh oksidov ZnO2 i Zn2O3. Voronezh, 128.
  16. Artemev, S. R. (2015). Present concepts of non-traditional methods of growing of metal whisker crystals. Pulling of whiskers from solution. Technology Audit and Production Reserves, 3 (4 (23)), 8–12. doi:10.15587/2312-8372.2015.42409
  17. Artemev, S. R. (2015). Current concepts of non-traditional methods of cultivation metal whisker crystals. Pulling whisker pole from melt. Technology Audit and Production Reserves, 2 (4 (22)), 16–19. doi:10.15587/2312-8372.2015.40499
  18. Artemev, S. R., Belan, S. V. (2013). Properties and basic methods of receipt of threadlike crystals. Eastern-European Journal of Enterprise Technologies, 5 (1 (65)), 22–26. Available at: http://journals.uran.ua/eejet/article/view/18160
  19. Spedding, F. H., Beaudry, B. J., Groat, J. J., Palmer, P. E. (1970). Les Elements Des Terres Rares. Vol. 1. Editions du Centre Nat. de la Recherche Scientifique, 25.
  20. Chalmers, B. (1964). Principles of Solidification. New York: Wiley, 319.
  21. Liquid Metals and Solidification. (1958). Cleveland: American Society for Metals.
  22. Gow, K. V., Chalmers, B. (1951). The preparation of high melting point metal single crystals and bicrystals with pre-determined crystallographic orientation. British Journal of Applied Physics, 2 (10), 300–303. doi:10.1088/0508-3443/2/10/305
  23. Hurle, D. T. J. (1966). Temperature oscillations in molten metals and their relationship to growth striae in melt-grown crystals. Philosophical Magazine, 13 (122), 305–310. doi:10.1080/14786436608212608
  24. Utech, H. P., Flemings, M. C. (1966). Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field. Journal of Applied Physics, 37 (5), 2021–2024. doi:10.1063/1.1708664
  25. Nacken, R., Neues, J. B. (1915). Uber das Wachstum von Kristallpolyedern in ihrem Schmelzfluß. Mineralog. Geol. Palaontol. Ref. Teil., 2, 133–164.
  26. Kyropoulos, S. (1926). Ein Verfahren zur Herstellung großer Kristalle. Zeitschrift Für Anorganische Und Allgemeine Chemie, 154 (1), 308–313. doi:10.1002/zaac.19261540129
  27. Czochralski, J. (1918). Ein neues Verfahren zur Messung des Kristallisationsgeschwindigkeit der Metalle. Zeitschrift für Physikalische Chemie, 92, 219.
  28. Sworn, C. H., Brown, T. E. (1972). The growth of dislocation-free copper crystals. Journal of Crystal Growth, 15 (3), 195–203. doi:10.1016/0022-0248(72)90119-4
  29. Howe, S., Elbaum, C. (1961). The occurrence of dislocations in crystals grown from themelt. Philosophical Magazine, 6 (70), 1227–1240. doi:10.1080/14786436108243373
  30. Hukin, D. A. (1990). The Levitational Zone Refining (LZR) of photovoltaic silicon. Journal of Crystal Growth, 104 (1), 93–97. doi:10.1016/0022-0248(90)90314-b
  31. Carlson, O. N., Schmidt, F. A., Peterson, D. T. (1966). Electrotransport of interstitial atoms in yttrium. Journal of the Less Common Metals, 10 (1), 1–11. doi:10.1016/0022-5088(66)90038-5
  32. Schmidt, F. A., Warner, J. C. (1967). Electrotransport of carbon, nitrogen and oxygen in vanadium. Journal of the Less Common Metals, 13 (5), 493–500. doi:10.1016/0022-5088(67)90084-7
  33. Peterson, D. T., Schmidt, F. A. (1969). Electrotransport of carbon, nitrogen and oxygen in lutetium. Journal of the Less Common Metals, 18 (2), 111–116. doi:10.1016/0022-5088(69)90129-5
  34. Peterson, D. T., Schmidt, F. A. (1971). Preparation of high purity thorium and thorium single crystals. Journal of the Less Common Metals, 24 (2), 223–228. doi:10.1016/0022-5088(71)90099-3
  35. Bradley, A. J. (1925). CX. The allotropy of manganese. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 50 (299), 1018–1030. doi:10.1080/14786442508628546
  36. Mills, D., Craig, G. (1966). Etching dislocations in zirconium. Journal of Electrochemical Technology, 4, 300.
  37. Field, W. G., Wagner, R. W. (1968). Thermal imaging for single crystal growth and its application to ruby. Journal of Crystal Growth, 3–4, 799–803. doi:10.1016/0022-0248(68)90270-4
  38. Drabble, J. R. (1968). The arc transfer process of crystal growth. Journal of Crystal Growth, 3–4, 804–807. doi:10.1016/0022-0248(68)90271-6
  39. Gasson, D. B., Cockayne, B. (1970). Oxide crystal growth using gas lasers. Journal of Materials Science, 5 (2), 100–104. doi:10.1007/bf00554627
  40. Precht, W., Hollox, G. E. (1968). A floating zone technique for the growth of carbide single crystals. Journal of Crystal Growth, 3–4, 818–823. doi:10.1016/0022-0248(68)90274-1
  41. Esenski, B., Khartman, E. (1962). Nekotorye zamechaniya o roste i mekhanicheskikh svoystvakh nitevidnykh kristallov NaCl. Kristallografiya, 7, 433–436.
  42. Berezhkova, G. V., Rozhanskiy, V. N. (1963). K voprosu o mekhanizmakh rosta ionnykh nitevidnykh kristallov iz rastvorov. Kristallografiya, 8, 420–426.
  43. Glester, H. (1981). Materials with ultra-fine grain size. Deformation of Polycrystals: Mechanisms and Microstructures. Roskilde: Ris. Nat. Laboratory, 21.
  44. Glester, H., Marquardt, P. (1984). Nanocrystalline structures – on approach to new materials. Zeitschrift fur Metallkunde, 75 (4), 263–267.
  45. Biirringer, R., Herr, U., Gleiler, H. (1986). Nanocrystalline materials: a first report. Trans. Japan/Inst. Met. Suppl., 27, 43–52.
  46. Gleiter, H. (1989). Nanocrystalline materials. Progress in Materials Science, 33 (4), 223–315. doi:10.1016/0079-6425(89)90001-7
  47. Siegel, R. W., Hahn, H. (1987). Nanjphase materials. Current Trends in Physics of materials. Singapore: World Sci. Publ. Co, 403–420.
  48. Siegel, R. W. (1994). What do we really know about the atomic-scale structures of nanophase materials? Journal of Physics and Chemistry of Solids, 55 (10), 1097–1106. doi:10.1016/0022-3697(94)90127-9
  49. Matthews, M. D., Pechenik, A. (1991). Rapid Hot-Pressing of Ultrafine PSZ Powders. Journal of the American Ceramic Society, 74 (7), 1547–1553. doi:10.1111/j.1151-2916.1991.tb07138.x
  50. Chen, D.-J., Mayo, M. J. (1993). Densification and grain growth of ultrafian 3 mol % Y2O3-ZrO2 ceramics. Nanostructured Materials, 2 (5), 469–478. doi:10.1016/0965-9773(93)90164-7

Published

2017-12-28

How to Cite

Artemev, S., Shaporev, V., & Tsymbal, B. (2017). Investigation of methods of obtaining whiskers in composite material. Technology Audit and Production Reserves, 1(3(39), 8–13. https://doi.org/10.15587/2312-8372.2018.124287

Issue

Section

Chemical and Technological Systems: Original Research