Analysis of methods of regulation of silicon dioxide particles size obtained by the Stober method
DOI:
https://doi.org/10.15587/2312-8372.2018.128571Keywords:
Stober method, silicon dioxide doped nanoparticles, nanoparticle size regulation, sol-gel processAbstract
The object of research is the method of synthesis of silicon dioxide nanoparticles, namely the Stober method. Synthesis of particles with the help of the Stober process is an example of a sol-gel method, one of the most practical and controlled methods for obtaining controlled size nanoparticles, shapes and morphologies. The Stober method is a classical approach to the synthesis of silica nanoparticles, but in existing works there is no systematic approach to establishing a connection between such reaction parameters as the concentration of components, temperature and time of the process. During the research, various types of information retrieval and information research were used. As a result of this work, a survey is obtained that is able to solve the problem of systematizing the influence of these parameters under the conditions of the Stober process. Methods for regulating the size of silica particles are considered, namely, a change in: a temperature in a sufficiently wide range from 5 ºC to 65 ºC; TEOS/H2O/NH3 concentration; quantity and thermodynamic quality of the solvent, as well as the effect of the reaction time. The influence of these parameters is considered not only from the point of view of changing the unit parameter, but also in combination with the others. The regularities of the particle diameter variation for the main synthesis conditions are established. The ways of particle synthesis by the Stober method from hundreds of nanometers to micrometers are shown. It is shown that for the synthesis of particles with minimal dimensions, a decrease in the concentration of the reacting components will be necessary: TEOS, H2O and NH3. This makes it possible to reduce the rate of hydrolysis and condensation processes, as well as the solubility of the intermediate Si(OC2H5)4-X(OH)X], which determines the absence of supersaturation during nucleation. The determining factors for this decrease are the increased synthesis temperature and the use of more polar solvents. The results of the work can be used to control the synthesis of silicon dioxide nanoparticles for various applications, from catalytic systems to functional fillers of materials and in particular to the creation of superhydrophobic structures.
References
- Iler, R. K. (1979). The Chemistry of Silica and Silicates. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Chichester: John Wiley and Sons, 886.
- Giesche, H. (1994). Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. Journal of the European Ceramic Society, 14 (3), 189–204. doi:10.1016/0955-2219(94)90087-6
- Park, S. K., Kim, K. D., Kim, H. T. (2002). Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197 (1–3), 7–17. doi:10.1016/s0927-7757(01)00683-5
- Sadasivan, S., Rasmussen, D. H., Chen, F. P., Kannabiran, R. K. (1998). Preparation and characterization of ultrafine silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132 (1), 45–52. doi:10.1016/s0927-7757(97)00148-9
- ScienceDirect. Available at: https://www.sciencedirect.com/
- Roco, M., Tomellini, R. (2002). Nanotechnology-Revolutionary Opportunities and societal Implications. 3rd Joint EC-NSF Workshop on Nanotechnology.
- Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B. F. et al. (1998). Hierarchically Ordered Oxides. Science, 282 (5397), 2244–2246. doi:10.1126/science.282.5397.2244
- Fitz-Gerald, J., Pennycook, S., Gao, H., Singh, R. K. (1999). Synthesis and properties of nanofunctionalized particulate materials. Nanostructured Materials, 12 (5–8), 1167–1171. doi:10.1016/s0965-9773(99)00320-7
- Xia, Y., Whitesides, G. M. ( 1998). Soft Lithography. Angewandte Chemie International Edition, 37, 550–575. doi:10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.0.co;2-g
- Wang, X.-D., Shen, Z.-X., Sang, T., Cheng, X.-B., Li, M.-F., Chen, L.-Y., Wang, Z.-S. (2010). Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate. Journal of Colloid and Interface Science, 341 (1), 23–29. doi:10.1016/j.jcis.2009.09.018
- Payne, C., Bergna, H. (1994). The Colloid Chemistry of Silica. American Chemical Society, 234, 1–47. doi:10.1021/ba-1994-0234.ch001
- Chiappini, A., Armellini, C., Chiasera, A., Ferrari, M., Jestin, Y., Mattarelli, M. et al. (2007). Design of photonic structures by sol–gel-derived silica nanospheres. Journal of Non-Crystalline Solids, 353 (5–7), 674–678. doi:10.1016/j.jnoncrysol.2006.10.034
- Pallavidino, L., Razo, D. S., Geobaldo, F., Balestreri, A., Bajoni, D., Galli, M. et al. (2006). Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids, 352 (9–20), 1425–1429. doi:10.1016/j.jnoncrysol.2005.10.047
- Wang, C.-T., Wu, C.-L., Chen, I.-C., Huang, Y.-H. (2005). Humidity sensors based on silica nanoparticle aerogel thin films. Sensors and Actuators B: Chemical, 107 (1), 402–410. doi:10.1016/j.snb.2004.10.034
- Grant, S., Weilbaecher, C., Lichlyter, D. (2007). Development of a protease biosensor utilizing silica nanobeads. Sensors and Actuators B: Chemical, 121 (2), 482–489. doi:10.1016/j.snb.2006.04.096
- Wang, H., Bai, Y., Liu, S., Wu, J., Wong, C. P. (2002). Combined effects of silica filler and its interface in epoxy resin. Acta Materialia, 50 (17), 4369–4377. doi:10.1016/s1359-6454(02)00275-6
- Zhang, H., Zhang, Z., Friedrich, K., Eger, C. (2006). Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia, 54 (7), 1833–1842. doi:10.1016/j.actamat.2005.12.009
- Kwon, S., Adachi, T., Araki, W., Yamaji, A. (2006). Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites: Considered in terms of the particle packing model. Acta Materialia, 54 (12), 3369–3374. doi:10.1016/j.actamat.2006.03.026
- Klein, S., Thorimbert, S., Maier, W. F. (1996). Amorphous Microporous Titania–Silica Mixed Oxides: Preparation, Characterization, and Catalytic Redox Properties. Journal of Catalysis, 163 (2), 476–488. doi:10.1006/jcat.1996.0349
- Vacassy, R., Flatt, R. J., Hofmann, H., Choi, K. S., Singh, R. K. (2000). Synthesis of Microporous Silica Spheres. Journal of Colloid and Interface Science, 227 (2), 302–315. doi:10.1006/jcis.2000.6860
- Kurungot, S., Yamaguchi, T., Nakao, S. (2003). Rh/γ-Al2O3 catalytic layer integrated with Sol–Gel synthesized microporous silica membrane for compact membrane reactor applications. Catalysis Letters, 86 (3/4), 273–278. doi:10.1023/a:1022636606705
- Lin, Y.-S., Wu, S.-H., Hung, Y., Chou, Y.-H., Chang, C., Lin, M.-L. et al. (2006). Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials, 18 (22), 5170–5172. doi:10.1021/cm061976z
- Chung, T.-W., Yeh, T.-S., Yang, T. C.-K. (2001). Influence of manufacturing variables on surface properties and dynamic adsorption properties of silica gels. Journal of Non-Crystalline Solids, 279 (2–3), 145–153. doi:10.1016/s0022-3093(00)00411-7
- Bogush, G. H., Tracy, M. A., Zukoski, C. F. (1988). Preparation of monodisperse silica particles: Control of size and mass fraction. Journal of Non-Crystalline Solids, 104 (1), 95–106. doi:10.1016/0022-3093(88)90187-1
- Chou, K. S., Chen, C. C. (2003). Preparation and Characterization of Monodispersed Silica Colloids. Advances in Technology of Materials and Materials Processing Journal, 5 (1), 31–35.
- Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26 (1), 62–69. doi:10.1016/0021-9797(68)90272-5
- Kim, S.-S., Kim, H.-S., Kim, S. G., Kim, W.-S. (2004). Effect of electrolyte additives on sol-precipitated nano silica particles. Ceramics International, 30 (2), 171–175. doi:10.1016/s0272-8842(03)00085-3
- Azlinaa, H. N., Hasnidawani, J. N., Norita, H. (2015). Synthesis of SiO2 Nanostructures Using Sol-Gel Method. 5th International Science Congress & Exhibition. Lykia.
- Wang, C., Zhang, Y., Dong, L., Fu, L., Bai, Y., Li, T. et al. (2000). Two-Dimensional Ordered Arrays of Silica Nanoparticles. Chemistry of Materials, 12 (12), 3662–3666. doi:10.1021/cm990738j
- Lei, Z., Xiao, Y., Dang, L., Lu, M., You, W. (2006). Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. Microporous and Mesoporous Materials, 96 (1–3), 127–134. doi:10.1016/j.micromeso.2006.06.031
- Chou, K.-S., Chen, C.-C. (2008). The critical conditions for secondary nucleation of silica colloids in a batch Stober growth process. Ceramics International, 34 (7), 1623–1627. doi:10.1016/j.ceramint.2007.07.009
- Rahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J., Bakar, M. A., Adnan, R., Chee, C. K. (2007). An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294 (1–3), 102–110. doi:10.1016/j.colsurfa.2006.08.001
- Wang, H.-C., Wu, C.-Y., Chung, C.-C., Lai, M.-H., Chung, T.-W. (2006). Analysis of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology. Industrial & Engineering Chemistry Research, 45 (24), 8043–8048. doi:10.1021/ie060299f
- Kim, K. D., Kim, H. T. (2002). Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method. Journal of Sol-Gel Science and Technology, 25 (3), 183–189. doi:10.1023/a:1020217105290
- Tan, C. G., Bowen, B. D., Epstein, N. (1987). Production of monodisperse colloidal silica spheres: Effect of temperature. Journal of Colloid and Interface Science, 118 (1), 290–293. doi:10.1016/0021-9797(87)90458-9
- Meier, M., Ungerer, J., Klinge, M., Nirschl, H. (2018). Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 559–564. doi:10.1016/j.colsurfa.2017.11.047
- Pierre, A. C. (1998). Introduction to Sol–Gel Processing. Boston: Kluwer Academic Publishers, 394. doi:10.1007/978-1-4615-5659-6
- Satoh, T., Akitaya, M., Konno, M., Saito, S. (1997). Particle Size Distributions Produced by Hydrolysis and Condensation of Tetraethylorthosilicate. Journal of Chemical Engineering of Japan, 30 (4), 759–762. doi:10.1252/jcej.30.759
- Kim, K. D., Kim, H. T. (2004). New Process for the Preparation of Monodispersed, Spherical Silica Particles. Journal of the American Ceramic Society, 85 (5), 1107–1113. doi:10.1111/j.1151-2916.2002.tb00230.x
- Ibrahim, I. A. M., Zikry, A. A. F., Sharaf, M. A. (2010). Preparation of spherical silica nanoparticles. Journal of American Science, 6 (11), 985–989.
- Bogush, G., Zukoski, C. (1991). Uniform silica particle precipitation: An aggregative growth model. Journal of Colloid and Interface Science, 142 (1), 19–34. doi:10.1016/0021-9797(91)90030-c
- Brinker, C., Scherer, G. (1990). The Physics and Chemistry of Sol-Gel Processing. San Diego: Academic Press Inc., 908.
- Chen, S.-L., Dong, P., Yang, G.-H. (1997). The Size Dependence of Growth Rate of Monodisperse Silica Particles from Tetraalkoxysilane. Journal of Colloid and Interface Science, 189 (2), 268–272. doi:10.1006/jcis.1997.4809
- Matsoukas, T., Gulari, E. (1988). Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. Journal of Colloid and Interface Science, 124 (1), 252–261. doi:10.1016/0021-9797(88)90346-3
- Matsoukas, T., Gulari, E. (1989). Monomer-addition growth with a slow initiation step: A growth model for silica particles from alkoxides. Journal of Colloid and Interface Science, 132 (1), 13–21. doi:10.1016/0021-9797(89)90210-5
- Green, D., Jayasundara, S., Lam, Y.-F., Harris, M. (2003). Chemical reaction kinetics leading to the first Stober silica nanoparticles – NMR and SAXS investigation. Journal of Non-Crystalline Solids, 315 (1–2), 166–179. doi:10.1016/s0022-3093(02)01577-6
- Chen, S.-L. (1998). Preparation of monosize silica spheres and their crystalline stack. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142 (1), 59–63. doi:10.1016/s0927-7757(98)00276-3
- Gao, W., Rigout, M., Owens, H. (2016). Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. Journal of Nanoparticle Research, 18 (12). doi:10.1007/s11051-016-3691-8
- Green, D., Lin, J., Lam, Y.-F., Hu, M. Z.-C., Schaefer, D. W., Harris, M. (2003). Size, volume fraction, and nucleation of Stober silica nanoparticles. Journal of Colloid and Interface Science, 266 (2), 346–358. doi:10.1016/s0021-9797(03)00610-6
- Lee, K., Sathyagal, A. N., McCormick, A. V. (1998). A closer look at an aggregation model of the Stöber process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 144 (1–3), 115–125. doi:10.1016/s0927-7757(98)00566-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Anastasiia Kharchenko, Oleksiy Myronyuk, Liubov Melnyk, Pavlo Sivolapov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.