Analysis of methods of regulation of silicon dioxide particles size obtained by the Stober method

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.128571

Keywords:

Stober method, silicon dioxide doped nanoparticles, nanoparticle size regulation, sol-gel process

Abstract

The object of research is the method of synthesis of silicon dioxide nanoparticles, namely the Stober method. Synthesis of particles with the help of the Stober process is an example of a sol-gel method, one of the most practical and controlled methods for obtaining controlled size nanoparticles, shapes and morphologies. The Stober method is a classical approach to the synthesis of silica nanoparticles, but in existing works there is no systematic approach to establishing a connection between such reaction parameters as the concentration of components, temperature and time of the process. During the research, various types of information retrieval and information research were used. As a result of this work, a survey is obtained that is able to solve the problem of systematizing the influence of these parameters under the conditions of the Stober process. Methods for regulating the size of silica particles are considered, namely, a change in: a temperature in a sufficiently wide range from 5 ºC to 65 ºC; TEOS/H2O/NH3 concentration; quantity and thermodynamic quality of the solvent, as well as the effect of the reaction time. The influence of these parameters is considered not only from the point of view of changing the unit parameter, but also in combination with the others. The regularities of the particle diameter variation for the main synthesis conditions are established. The ways of particle synthesis by the Stober method from hundreds of nanometers to micrometers are shown. It is shown that for the synthesis of particles with minimal dimensions, a decrease in the concentration of the reacting components will be necessary: TEOS, H2O and NH3. This makes it possible to reduce the rate of hydrolysis and condensation processes, as well as the solubility of the intermediate Si(OC2H5)4-X(OH)X], which determines the absence of supersaturation during nucleation. The determining factors for this decrease are the increased synthesis temperature and the use of more polar solvents. The results of the work can be used to control the synthesis of silicon dioxide nanoparticles for various applications, from catalytic systems to functional fillers of materials and in particular to the creation of superhydrophobic structures.

Author Biographies

Anastasiia Kharchenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Department of Chemical Technology of Composite Materials

Oleksiy Myronyuk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Chemical Technology of Composite Materials

Liubov Melnyk, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Chemical Technology of Composite Materials

Pavlo Sivolapov, Company «Polygon», 17/46, Mikhail Donets str., Kyiv, Ukraine, 03056

Specialist

References

  1. Iler, R. K. (1979). The Chemistry of Silica and Silicates. Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Chichester: John Wiley and Sons, 886.
  2. Giesche, H. (1994). Synthesis of monodispersed silica powders I. Particle properties and reaction kinetics. Journal of the European Ceramic Society, 14 (3), 189–204. doi:10.1016/0955-2219(94)90087-6
  3. Park, S. K., Kim, K. D., Kim, H. T. (2002). Preparation of silica nanoparticles: determination of the optimal synthesis conditions for small and uniform particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197 (1–3), 7–17. doi:10.1016/s0927-7757(01)00683-5
  4. Sadasivan, S., Rasmussen, D. H., Chen, F. P., Kannabiran, R. K. (1998). Preparation and characterization of ultrafine silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 132 (1), 45–52. doi:10.1016/s0927-7757(97)00148-9
  5. ScienceDirect. Available at: https://www.sciencedirect.com/
  6. Roco, M., Tomellini, R. (2002). Nanotechnology-Revolutionary Opportunities and societal Implications. 3rd Joint EC-NSF Workshop on Nanotechnology.
  7. Yang, P., Deng, T., Zhao, D., Feng, P., Pine, D., Chmelka, B. F. et al. (1998). Hierarchically Ordered Oxides. Science, 282 (5397), 2244–2246. doi:10.1126/science.282.5397.2244
  8. Fitz-Gerald, J., Pennycook, S., Gao, H., Singh, R. K. (1999). Synthesis and properties of nanofunctionalized particulate materials. Nanostructured Materials, 12 (5–8), 1167–1171. doi:10.1016/s0965-9773(99)00320-7
  9. Xia, Y., Whitesides, G. M. ( 1998). Soft Lithography. Angewandte Chemie International Edition, 37, 550–575. doi:10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.0.co;2-g
  10. Wang, X.-D., Shen, Z.-X., Sang, T., Cheng, X.-B., Li, M.-F., Chen, L.-Y., Wang, Z.-S. (2010). Preparation of spherical silica particles by Stober process with high concentration of tetra-ethyl-orthosilicate. Journal of Colloid and Interface Science, 341 (1), 23–29. doi:10.1016/j.jcis.2009.09.018
  11. Payne, C., Bergna, H. (1994). The Colloid Chemistry of Silica. American Chemical Society, 234, 1–47. doi:10.1021/ba-1994-0234.ch001
  12. Chiappini, A., Armellini, C., Chiasera, A., Ferrari, M., Jestin, Y., Mattarelli, M. et al. (2007). Design of photonic structures by sol–gel-derived silica nanospheres. Journal of Non-Crystalline Solids, 353 (5–7), 674–678. doi:10.1016/j.jnoncrysol.2006.10.034
  13. Pallavidino, L., Razo, D. S., Geobaldo, F., Balestreri, A., Bajoni, D., Galli, M. et al. (2006). Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids, 352 (9–20), 1425–1429. doi:10.1016/j.jnoncrysol.2005.10.047
  14. Wang, C.-T., Wu, C.-L., Chen, I.-C., Huang, Y.-H. (2005). Humidity sensors based on silica nanoparticle aerogel thin films. Sensors and Actuators B: Chemical, 107 (1), 402–410. doi:10.1016/j.snb.2004.10.034
  15. Grant, S., Weilbaecher, C., Lichlyter, D. (2007). Development of a protease biosensor utilizing silica nanobeads. Sensors and Actuators B: Chemical, 121 (2), 482–489. doi:10.1016/j.snb.2006.04.096
  16. Wang, H., Bai, Y., Liu, S., Wu, J., Wong, C. P. (2002). Combined effects of silica filler and its interface in epoxy resin. Acta Materialia, 50 (17), 4369–4377. doi:10.1016/s1359-6454(02)00275-6
  17. Zhang, H., Zhang, Z., Friedrich, K., Eger, C. (2006). Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Materialia, 54 (7), 1833–1842. doi:10.1016/j.actamat.2005.12.009
  18. Kwon, S., Adachi, T., Araki, W., Yamaji, A. (2006). Thermo-viscoelastic properties of silica particulate-reinforced epoxy composites: Considered in terms of the particle packing model. Acta Materialia, 54 (12), 3369–3374. doi:10.1016/j.actamat.2006.03.026
  19. Klein, S., Thorimbert, S., Maier, W. F. (1996). Amorphous Microporous Titania–Silica Mixed Oxides: Preparation, Characterization, and Catalytic Redox Properties. Journal of Catalysis, 163 (2), 476–488. doi:10.1006/jcat.1996.0349
  20. Vacassy, R., Flatt, R. J., Hofmann, H., Choi, K. S., Singh, R. K. (2000). Synthesis of Microporous Silica Spheres. Journal of Colloid and Interface Science, 227 (2), 302–315. doi:10.1006/jcis.2000.6860
  21. Kurungot, S., Yamaguchi, T., Nakao, S. (2003). Rh/γ-Al2O3 catalytic layer integrated with Sol–Gel synthesized microporous silica membrane for compact membrane reactor applications. Catalysis Letters, 86 (3/4), 273–278. doi:10.1023/a:1022636606705
  22. Lin, Y.-S., Wu, S.-H., Hung, Y., Chou, Y.-H., Chang, C., Lin, M.-L. et al. (2006). Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials, 18 (22), 5170–5172. doi:10.1021/cm061976z
  23. Chung, T.-W., Yeh, T.-S., Yang, T. C.-K. (2001). Influence of manufacturing variables on surface properties and dynamic adsorption properties of silica gels. Journal of Non-Crystalline Solids, 279 (2–3), 145–153. doi:10.1016/s0022-3093(00)00411-7
  24. Bogush, G. H., Tracy, M. A., Zukoski, C. F. (1988). Preparation of monodisperse silica particles: Control of size and mass fraction. Journal of Non-Crystalline Solids, 104 (1), 95–106. doi:10.1016/0022-3093(88)90187-1
  25. Chou, K. S., Chen, C. C. (2003). Preparation and Characterization of Monodispersed Silica Colloids. Advances in Technology of Materials and Materials Processing Journal, 5 (1), 31–35.
  26. Stober, W., Fink, A., Bohn, E. (1968). Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 26 (1), 62–69. doi:10.1016/0021-9797(68)90272-5
  27. Kim, S.-S., Kim, H.-S., Kim, S. G., Kim, W.-S. (2004). Effect of electrolyte additives on sol-precipitated nano silica particles. Ceramics International, 30 (2), 171–175. doi:10.1016/s0272-8842(03)00085-3
  28. Azlinaa, H. N., Hasnidawani, J. N., Norita, H. (2015). Synthesis of SiO2 Nanostructures Using Sol-Gel Method. 5th International Science Congress & Exhibition. Lykia.
  29. Wang, C., Zhang, Y., Dong, L., Fu, L., Bai, Y., Li, T. et al. (2000). Two-Dimensional Ordered Arrays of Silica Nanoparticles. Chemistry of Materials, 12 (12), 3662–3666. doi:10.1021/cm990738j
  30. Lei, Z., Xiao, Y., Dang, L., Lu, M., You, W. (2006). Fabrication of ultra-large mesoporous carbon with tunable pore size by monodisperse silica particles derived from seed growth process. Microporous and Mesoporous Materials, 96 (1–3), 127–134. doi:10.1016/j.micromeso.2006.06.031
  31. Chou, K.-S., Chen, C.-C. (2008). The critical conditions for secondary nucleation of silica colloids in a batch Stober growth process. Ceramics International, 34 (7), 1623–1627. doi:10.1016/j.ceramint.2007.07.009
  32. Rahman, I. A., Vejayakumaran, P., Sipaut, C. S., Ismail, J., Bakar, M. A., Adnan, R., Chee, C. K. (2007). An optimized sol–gel synthesis of stable primary equivalent silica particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294 (1–3), 102–110. doi:10.1016/j.colsurfa.2006.08.001
  33. Wang, H.-C., Wu, C.-Y., Chung, C.-C., Lai, M.-H., Chung, T.-W. (2006). Analysis of Parameters and Interaction between Parameters in Preparation of Uniform Silicon Dioxide Nanoparticles Using Response Surface Methodology. Industrial & Engineering Chemistry Research, 45 (24), 8043–8048. doi:10.1021/ie060299f
  34. Kim, K. D., Kim, H. T. (2002). Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method. Journal of Sol-Gel Science and Technology, 25 (3), 183–189. doi:10.1023/a:1020217105290
  35. Tan, C. G., Bowen, B. D., Epstein, N. (1987). Production of monodisperse colloidal silica spheres: Effect of temperature. Journal of Colloid and Interface Science, 118 (1), 290–293. doi:10.1016/0021-9797(87)90458-9
  36. Meier, M., Ungerer, J., Klinge, M., Nirschl, H. (2018). Synthesis of nanometric silica particles via a modified Stöber synthesis route. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 559–564. doi:10.1016/j.colsurfa.2017.11.047
  37. Pierre, A. C. (1998). Introduction to Sol–Gel Processing. Boston: Kluwer Academic Publishers, 394. doi:10.1007/978-1-4615-5659-6
  38. Satoh, T., Akitaya, M., Konno, M., Saito, S. (1997). Particle Size Distributions Produced by Hydrolysis and Condensation of Tetraethylorthosilicate. Journal of Chemical Engineering of Japan, 30 (4), 759–762. doi:10.1252/jcej.30.759
  39. Kim, K. D., Kim, H. T. (2004). New Process for the Preparation of Monodispersed, Spherical Silica Particles. Journal of the American Ceramic Society, 85 (5), 1107–1113. doi:10.1111/j.1151-2916.2002.tb00230.x
  40. Ibrahim, I. A. M., Zikry, A. A. F., Sharaf, M. A. (2010). Preparation of spherical silica nanoparticles. Journal of American Science, 6 (11), 985–989.
  41. Bogush, G., Zukoski, C. (1991). Uniform silica particle precipitation: An aggregative growth model. Journal of Colloid and Interface Science, 142 (1), 19–34. doi:10.1016/0021-9797(91)90030-c
  42. Brinker, C., Scherer, G. (1990). The Physics and Chemistry of Sol-Gel Processing. San Diego: Academic Press Inc., 908.
  43. Chen, S.-L., Dong, P., Yang, G.-H. (1997). The Size Dependence of Growth Rate of Monodisperse Silica Particles from Tetraalkoxysilane. Journal of Colloid and Interface Science, 189 (2), 268–272. doi:10.1006/jcis.1997.4809
  44. Matsoukas, T., Gulari, E. (1988). Dynamics of growth of silica particles from ammonia-catalyzed hydrolysis of tetra-ethyl-orthosilicate. Journal of Colloid and Interface Science, 124 (1), 252–261. doi:10.1016/0021-9797(88)90346-3
  45. Matsoukas, T., Gulari, E. (1989). Monomer-addition growth with a slow initiation step: A growth model for silica particles from alkoxides. Journal of Colloid and Interface Science, 132 (1), 13–21. doi:10.1016/0021-9797(89)90210-5
  46. Green, D., Jayasundara, S., Lam, Y.-F., Harris, M. (2003). Chemical reaction kinetics leading to the first Stober silica nanoparticles – NMR and SAXS investigation. Journal of Non-Crystalline Solids, 315 (1–2), 166–179. doi:10.1016/s0022-3093(02)01577-6
  47. Chen, S.-L. (1998). Preparation of monosize silica spheres and their crystalline stack. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142 (1), 59–63. doi:10.1016/s0927-7757(98)00276-3
  48. Gao, W., Rigout, M., Owens, H. (2016). Facile control of silica nanoparticles using a novel solvent varying method for the fabrication of artificial opal photonic crystals. Journal of Nanoparticle Research, 18 (12). doi:10.1007/s11051-016-3691-8
  49. Green, D., Lin, J., Lam, Y.-F., Hu, M. Z.-C., Schaefer, D. W., Harris, M. (2003). Size, volume fraction, and nucleation of Stober silica nanoparticles. Journal of Colloid and Interface Science, 266 (2), 346–358. doi:10.1016/s0021-9797(03)00610-6
  50. Lee, K., Sathyagal, A. N., McCormick, A. V. (1998). A closer look at an aggregation model of the Stöber process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 144 (1–3), 115–125. doi:10.1016/s0927-7757(98)00566-4

Published

2017-12-28

How to Cite

Kharchenko, A., Myronyuk, O., Melnyk, L., & Sivolapov, P. (2017). Analysis of methods of regulation of silicon dioxide particles size obtained by the Stober method. Technology Audit and Production Reserves, 2(3(40), 9–16. https://doi.org/10.15587/2312-8372.2018.128571

Issue

Section

Chemical and Technological Systems: Original Research