Technology of preflight intellectual engine diagnostics of unmanned aircraft

Authors

  • Віталій Юрійович Ларін National Aviation University, 03058, Kyiv, Kosmonavta Komarova 1, Ukraine

DOI:

https://doi.org/10.15587/2312-8372.2013.12955

Keywords:

unmanned aircraft, engine, vibroacoustic signal, informative frequencies, attribute system

Abstract

The article relates to the question of unmanned aviation, and aims to develop the technology of preflight intellectual diagnostics of engines of unmanned aircraft. On the basis of mathematical tools of fuzzy logic and artificial neural networks the signals converted using the discrete Fourier or wavelet transformations make up an attribute vector of a diagnosed engine. On the basis of the attribute vectors we form the information standards, which are the averaged characteristic of the state of the object. After that, we adapt the structure of the fuzzy neural network, which based on the analysis of the engine state by comparing the current data with the data of acoustic and vibration certificates, indicates a fault in a particular engine mount. The promising area is the use of data of vibration and acoustic certificates to correct the readings of course magnetometric sensors of navigation system of the unmanned aircraft with the engine diagnosed.

Author Biography

Віталій Юрійович Ларін, National Aviation University, 03058, Kyiv, Kosmonavta Komarova 1

Doctor of Technical Sciences, Professor

Department of Air Navigation Systems

References

  1. Mahmood, M.M. UAV Autopilot Design for the AUVSI, UAS International Competition [Текст] / M.M. Mahmood, M.S. Chowdhury // Proceedings of the ASME IDETC/CIE 2009. – 2009. – pp. 1– 9.
  2. AXI model motors [Електронний ресурс] / RCEcho. – Режим доступу : www/ URL : http://www.rcecho.com/AXI/?page=2. – 15.03.2013.
  3. Jain, A.K. Statistical pattern recognition: a review [Текст] / A.K. Jain, R.P.W. Duin, J. Mao // IEEE Trans. Pattern Anal. Machine Intell. – 2000. – Vol. 22. – pp. 4-37.
  4. Shannon, B.J. A comparative study of filter bank spacing for speech recognition [Текст] / B.J. Shannon, K.K. Paliwal // Proc. of Microelectronics engineering research conference. – Brisbane, 2003. – pp. 310-312.
  5. Федоров, Е.Е. Методики интеллектуальной диагностики [Текст] / Е.Е. Федоров. – Донецк: изд-во «Ноулидж», 2010. – 303 с.
  6. Daubechies, I. Ten lectures on wavelets [Текст] / I. Daubechies. – Philadelphia, SIAM. – 1992.– 343 p.
  7. Kasuriya, S. Comparative Study of Continuous Hidden Markov Models (CHMM) and Artificial Neural Network (ANN) on Speaker Identification System [Текст] / S. Kasuriya, C. Wutiwiwatchai, C. Tanprasert // Nectec Technical Journal. – 2001. – Vol.3, №12. – pp. 200-205.
  8. Huang, S. Use of Neural Fuzzy Networks with Mixed Genetic/ Gradient Algorithm in Automated Vehicle Control [Текст] / S. Huang, W. Ren // IEEE Transactions On Industrial Electronics. – 1999. – Vol. 46.– №6. – pp. 1090–1102.
  9. Reccione, M.C. The enhanced variable rate coder: Toll quality speech for CDMA [Текст] / M.C. Reccione // Int. J. of Speech Technology. – 1999. – № 2. – pp. 305-315.
  10. Патент 67742 Україна, МПК МПК8 G01N 21/3 Спосіб інтелектуальної діагностики виробничих об’єктів. Федоров Є.Є, Ларін В.Ю., Харченко В.П., Купцова К.Ю., Чичикало Н.І. – №u201107221; Заявл. 09.06.2011; Опубл. 01.03.12, Бюл. № 5 – 10 с.
  11. Mahmood, M.M., Chowdhury, M.S. (2009). UAV Autopilot Design for the AUVSI, UAS International Competition. Proceedings of the ASME IDETC/CIE. pp.1–9.
  12. AXI model motors. Available: http://www.rcecho.com/AXI/?page=2. Last accessed 15 march 2013.
  13. Jain, A.K., Duin, R.P.W., Mao, J. (2000). Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Machine Intell. Vol. 22, pp. 4-37.
  14. Shannon, B.J., Paliwal, K.K. (2003). A comparative study of filter bank spacing for speech recognition. Proc. of Microelectronics engineering research conference. Brisbane. pp. 310-312.
  15. Fedorov, E.E. (2010). Metodiki intellektualnoi diagnostiki [The methods of intellectual diagnostics]. Donetsk: Noulidzh. 303 p.
  16. Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM. 343 p.
  17. Kasuriya, S., Wutiwiwatchai, C., Tanprasert, C. (2001). Comparative Study of Continuous Hidden Markov Models (CHMM) and Artificial Neural Network (ANN) on Speaker Identification System. Nectec Technical Journal. Vol.3, №12, pp. 200-205.
  18. Huang, S., Ren, W. (1999). Use of Neural Fuzzy Networks with Mixed Genetic/ Gradient Algorithm in Automated Vehicle Control. IEEE Transactions On Industrial Electronics. Vol. 46, №6, pp. 1090–1102.
  19. Reccione, M.C. (1999). The enhanced variable rate coder: Toll quality speech for CDMA. Int. J. of Speech Technology. № 2, pp. 305-315.
  20. Fedorov, E.E., Larin, V.U., Kharchenko, V.P., Kuptsova, K.U., Chichikalo, N.I. Patent 67742 Ukraine IPC8 G01N 21/3 The method of intellectual diagnostics of industrial objects [Sposib intellectualnoi diagnostiki vyrobnychykh obektiv]. №u201107221; Request 09.06.2011; Published 01.03.12, Bull. № 5. 10 р.

Published

2013-03-29

How to Cite

Ларін, В. Ю. (2013). Technology of preflight intellectual engine diagnostics of unmanned aircraft. Technology Audit and Production Reserves, 2(1(10), 27–30. https://doi.org/10.15587/2312-8372.2013.12955