Application of generalized comb wavelet functions for angiogram image segmentation
DOI:
https://doi.org/10.15587/2312-8372.2013.16235Keywords:
skeleton, image segmentation, angiogram, the wavelet conversionAbstract
The existing methods of angiograms processing do not provide the required speed and quality of segmentation, which determines the accuracy of diagnostic solutions. Therefore, to reduce the angiograms processing time a method has been developed for segmentation of the vessels illustrations on the 3098pangiograms, and analyze the result of segmentation by means of conversion with the generalized comb wavelet function at the vessels localization and the replacement of several processing levels by the one. The latter is achieved by the fact that the convolution with a generalized comb wavelet function is similar to using a set of bandpass filters. At the phase of segmentation results analysis of the vessels skeleton excretion was increased using morphological processing. The implementation of the developed method has allowed to reduce angiogram images processing time at 43% that is required to combine the diagnostic and therapeutic potential of the angiography method during a single procedure. Thus, the noise resistance characteristics may be changed as follows: the probability of the 1st type error is 1.22 times reduced, and the probability of the 2nd type error 1.14 times increases. As a result of experiments, it was shown that the developed method provides the vessels localization quality required for accurate singling out of the diagnostic parameters of heart disorders, which improves the accuracy of heart diseases diagnosing.References
- Ильясова, Н.Ю. Компьютерная технология восстановления пространственной структуры коронарных сосудов по ангиографическим проекциям [Текст] / Н.Ю. Ильясова, Н.Л. Казанский, А.О. Корепанов, А.В. Куприянов, А.В. Устинов, А.Г. Храмов // Компьютерная оптика. – 2009. – Т. 33, № 3. – С. 281-317.
- Kirbas, C. A review of vessel extraction techniques and algorithms [Text] / C. Kirbas, F. Quek // ACM Computing Survey. – 2004. – № 36 (2). – pp. 81-124.
- Frangi, A.F. Multiscale vessel enhancement filtering [Text] / A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever // Lecture Notes in Сomputer Science. – 1998. – № 1496. – рp. 130-138.
- Lindeberg, T. Edge detection and ridge detection with automatic scale selection [Text] / T. Lindeberg // International Journal of Computer Vision. – № 30(2). – 1998. – рp. 117-154.
- Полякова, М.В. Обобщённые вейвлет-функции с компактным носителем в задаче сегментации изображений упорядоченных текстур [Текст] / М.В. Полякова, В.Н. Крылов // Электроника и связь. – №1. – 2007. – C. 27-36.
- Добеши, И. Десять лекций по вейвлетам [Текст] / И. Добеши. – Москва-Ижевск, 2001. – 464 c.
- Otsu, N. A threshold selection method from gray-level histograms [Text] / N. Otsu // IEEE Trans. Syst. Man, Cybern SMC-9. – 1979. – рp. 62-66.
- Давыдов, В.О. Автоматизация технологического процесса регистрации номеров при управлении транспортными потоками [Текст] : Дис. на соискание науч. ст. к.т.н. / В.О. Давыдов; науч. рук. М.В. Максимов. – Одесса, 2004. – 155 с.
- Роджерс, Д. Алгоритмические основы машинной графики [Текст] : пер. с англ. [Текст] / Д. Роджерс, С.А. Вичеса, Г.В. Олохонтовой, П.А. Монахова. – М.: Мир, 1989. – 512 с.
- Kazmar, T. Opacity quantification in cardiac angiogram sequences [Text] / T. Kazmar, J. Kybic; J. Jan, J. Kozumplik, I. Provaznik (Eds.) // BIOSIGNAL: Analysis of Biomedical Signals and Images. – Brno, 2008. – p. 66.
- Ilyasova, N.Y., Kazanskiy, N.L., Korepanov, А.О., Kupriyanov, А.V., Ustinov, А.V., Khramov, А.G. (2009). Computer technology for recovery of the spatial structure of the coronary vessels on angiographic projections. Computer Optics. Т. 33, № 3, 281-317.
- Kirbas, C., Quek, F. (2004). A review of vessel extraction techniques and algorithms. ACM Computing Survey 36 (2), 81-124.
- Frangi, A.F. Niessen, W.J., Vincken, K.L., Viergever, M.A. (1998). Multiscale vessel enhancement filtering. Lecture Notes in Сomputer Science 1496, 130-138.
- Lindeberg, T. (1998). Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30(2), 117-154.
- Polyakova, М.V., Krylov, V.N. (2007). Generalized wavelet functions with compact support in the task of image segmentation ordered textures. Electronics and Communication 1, 27-36.
- Daubechies, I. (2001). Ten Lectures on Wavelets. Moscow-Izhevsk, 464.
- Otsu, N. (1979). A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man, Cybern SMC-9, 62-66.
- Davydov, V.О. (2004). Automation of the process registration numbers in the management of traffic flows: dissertation of a scientific degree of candidate of technical sciences /supervisor M.V. Maksimov. Odessa, 155.
- Rogers, D. (1989). Algorithmic foundations of computer graphics: Trans. from engl. S.А. Vichesa, G.V. Olohontova, P.А. Monakho. М.: Mir, 512 .
- Kazmar, T., Kybic, J. (2008). Opacity quantification in cardiac angiogram sequences. BIOSIGNAL: Analysis of Biomedical Signals and Images, J. Jan, J. Kozumplik, I. Provaznik (Eds.). Brno, 66.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Марина Вячеславовна Полякова, Алеся Владимировна Ищенко, Юрий Владимирович Емец
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.