Extraction of Cu2+, Zn2+ and Ni2+ cations from industrial wastewater by ionite KU-2-8

Authors

  • Anastasiia Koliehova Admiral Makarov National University of Shipbuilding 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025, Ukraine
  • Ganna Trokhymenko Admiral Makarov National University of Shipbuilding 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025, Ukraine https://orcid.org/0000-0002-0835-3551
  • Nataliya Magas Admiral Makarov National University of Shipbuilding 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025, Ukraine https://orcid.org/0000-0002-2579-1465

DOI:

https://doi.org/10.15587/2312-8372.2019.181411

Keywords:

heavy metals, ion exchange, sorption of metal ions, waste water, galvanic production

Abstract

The object of the research is model solutions of wastewater and wash water from metal processing enterprises containing copper, nickel and zinc ions. One of the most problematic places is that the process of sorption of copper, nickel and zinc cations on the strongly acidic cation exchanger KU-2-8 at high metal concentrations is not well understood.

The sorption and desorption processes of Cu2+, Zn2+ and Ni2+ ions on KU-2-8 cation exchanger in the H+ form are studied using model solutions of metal sulfate at high concentrations. The experiments were carried out in an ion-exchange column with a diameter of 2 cm 2 loaded with cation exchanger with a volume of 20 cm 3. During the research, the concentration of metals was measured by titrometric, photometric and instrumental methods (concentration of copper, zinc and nickel ions, acidity, alkalinity, pH). Model solutions of heavy metal ions Cu2+, Zn2+ and Ni2+ with a concentration of 10, 20, and 50 mg-Eq/dm3 were passed through KU-2-8 ion exchanger in the H+ form. During sorption of 0.01 n model solutions, the ion exchanger capacity on average reached 2073 mg-Eq/dm3, at 0.02 n – 2140 mg-Eq/dm3 and at 0.05 n – 2100 mg-Eq/dm3. After metal extraction from model solutions and complete saturation of the ion exchanger, the conditions for the regeneration of cation exchanger in the Cu2+, Zn2+ and Ni2+ form with solutions of 5, 8 and 10 % sulfuric acid were studied. The efficiency of desorption of divalent metal ions from an ion exchanger was almost 100 %.

The scientific novelty of the work lies in the fact that metal ions were sorbed for the first time at concentrations of 10, 20, and 50 mg-Eq/dm3 in terms of metal and their desorption of 5, 8, and 10 % sulfuric acid from cation exchanger.

After the experiments, a scheme for washing water treatment using ion exchange and electrolysis was proposed, which will allow the organization of environmentally friendly metal processing processes at galvanic enterprises.

Author Biographies

Anastasiia Koliehova, Admiral Makarov National University of Shipbuilding 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025

Postgraduate Student

Department of Ecology and Environmental Technologies

Ganna Trokhymenko, Admiral Makarov National University of Shipbuilding 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025

Doctor of Technical Sciences, Professor, Head of Department

Department of Ecology and Environmental Technologies

Nataliya Magas, Admiral Makarov National University of Shipbuilding 9, Heroiv Ukrainy ave., Mykolaiv, Ukraine, 54025

PhD

Department of Ecology and Environmental Technologies

References

  1. Danylian, O. H., Taranenko, V. M. (2003). Osnovy filosofii. Kharkiv: Pravo, 352.
  2. Earth Overshoot Day 2019 is July 29th, the earliest ever (2019). Global Footprint Network. Available at: https://www.footprintnetwork.org/2019/06/26/press-release-june-2019-earth-overshoot-day/
  3. Khilchevskyi, V. K., Obodovskyi, O. H., Hrebin, V. V. et. al. (2008). Zahalna hidrolohiia. Kyiv: Vydavnychopolihrafichnyi tsentr «Kyivskyi universytet», 399.
  4. Carstea, E. M., Bridgeman, J., Baker, A., Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: A review. Water Research, 95, 205–219. doi: http://doi.org/10.1016/j.watres.2016.03.021
  5. Koliehova, A. S., Trokhymenko, H. H., Homelia, M. D. (2018). Vyvchennia ionoobminnykh protsesiv vyluchennia ioniv midi ta tsynku na kationiti KU-2-8 ta elektrokhimichne rozdilennia reheneratsiinykh rozchyniv u systemi Cu-Zn. Vcheni zapysky Tavriiskoho natsionalnoho universytetu imeni V. I. Vernadskoho. Seriia: Tekhnichni nauky, 29 (68 (1 (2))), 142–147.
  6. Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5 (3), 2782–2799. doi: http://doi.org/10.1016/j.jece.2017.05.029
  7. Gunatilake, S. K. (2015). Methods of Removing Heavy Metals from Industrial Wastewater. Journal of Multidisciplinary Engineering Science Studies, 1 (1), 12–18.
  8. Azimi, A., Azari, A., Rezakazemi, M., Ansarpour, M. (2017). Removal of Heavy Metals from Industrial Wastewaters: A Review. ChemBioEng Reviews, 4 (1), 37–59. doi: http://doi.org/10.1002/cben.201600010
  9. Pliatsuk, L. D., Melnyk, O. S. (2008) Analiz tekhnolohii ochystky halvanichnykh stokiv v Ukraini. Visnyk Sumskoho derzhavnoho universytetu. Seriia Tekhnichni nauky, 2, 116–121.
  10. Calmon, C.; Calmon, C., Gold, H., Prober, R. (Eds.) (1979). Ion exchange pollution control (Vol. 2). CRC Press, Pub. locationBoca Raton. doi: http://doi.org/10.1201/9781351073868
  11. Chaplin, B. P. (2019). The Prospect of Electrochemical Technologies Advancing Worldwide Water Treatment. Accounts of Chemical Research, 52 (3), 596–604. doi: http://doi.org/10.1021/acs.accounts.8b00611
  12. Nachod, F. C., Schubert, J. (1956). Ion Exchange Technology. Imprint Academic Press. doi: http://doi.org/10.1016/c2013-0-12449-x
  13. Bolshanina, S. B., Hurets, H. M., Balabukha, D. S., Miliaieva, D. V. (2014). Ochyshchennia stichnykh vod halvanichnykh vyrobnytstv sorbtsiinymy metodamy. Ekolohichna bezpeka, 1, 114–118.
  14. Minaieva, V. O. (2013). Ionnyi obmin ta ionoobminna khromatohrafiia. Cherkasy: ChNU imeni Bohdana Khmelnytskoho, 128.
  15. Gomelya, N., Ivanova, V., Trus, I. (2017). Efficiency of extraction heavy metal ions from diluted solutions by ion-exchange methods. Technical sciences and technologies, 4 (10), 154–162. doi: http://doi.org/10.25140/2411-5363-2017-4(10)-154-162
  16. Verbych, S., Hilal, N., Sorokin, G., Leaper, M. (2005). Ion Exchange Extraction of Heavy Metal Ions from Wastewater. Separation Science and Technology, 39 (9), 2031–2040. doi: http://doi.org/10.1081/ss-120039317
  17. Homelia, M. D., Ivanova, V. P., Kamaiev, V. S., Marushchak, Yu. A. (2017). Kontsentruvannia kationiv vazhkykh metaliv na prykladi ioniv midi pry zastosuvanni kationitu KU-2-8. Intehrovani tekhnolohii ta enerhozberezhennia, 4, 70–75.
  18. Bobylev, A. E., Ikanina, E. V., Markov, V. F., Maskaeva, L. N. (2013). Kompozicionnye sorbenty na osnove kationita KU-2×8 s nanostrukturirovannoi gidroksidnoi ili sulfidnoi aktivnoi komponentnoi. Kondensirovannye sredy i mezhfaznye granicy, 15 (3), 238–246.
  19. Sokolova, L. P., Skornyakov, V. V., Kargman, V. B., Saldadse, K. M. (1986). Selective separation of components [copper, nickel, zinc, chromium(VI)] in the process of ion-exchange purification of waste waters. Journal of Chromatography A, 364, 135–142. doi: http://doi.org/10.1016/s0021-9673(00)96203-4
  20. Galimova, A. R. Tunakova, Iu. A., Kulakov, A. A. (2013). Issledovanie sorbcionnykh kharakteristik polimernykh ionitov, ispolzuemykh v vodopodgotovke. Vestnik Kazanskogo tekhnologicheskogo universiteta, 16 (10), 141–145.
  21. Lure, Iu. Iu. (1989). Spravochnik po analiticheskoi khimii. Moscow: Khimiia, 448.

Published

2019-07-25

How to Cite

Koliehova, A., Trokhymenko, G., & Magas, N. (2019). Extraction of Cu2+, Zn2+ and Ni2+ cations from industrial wastewater by ionite KU-2-8. Technology Audit and Production Reserves, 5(3(49), 22–27. https://doi.org/10.15587/2312-8372.2019.181411

Issue

Section

Ecology and Environmental Technology: Original Research