Effect of heat treatment with biopreparation on the quality of tomato fruit during storage

Authors

DOI:

https://doi.org/10.15587/2706-5448.2021.235533

Keywords:

storage of tomatoes, tincture of biomass of the larvae of the greater wax moth, sugar content, titratable acidity

Abstract

Tomato fruits are characterized by a high content of biologically active substances, which makes them an irreplaceable component of nutrition. However, tomatoes are perishable products and require additional measures to extend storage. One of the most problematic areas is the limited use of synthetic chemicals for processing fruit prior to storage. An alternative to them are natural exogenous preparations with antioxidant and disinfectant effects, which are environmentally friendly. However, the treatment of fruits with natural substances does not have sufficient efficiency in comparison with synthetic ones, which requires a combination with other post-harvest measures to increase cold stress. The object of research is the process of storing tomato fruits using heat treatment with a biological product. Numerous studies indicate the feasibility of using the processing of fruits with biological products to extend their storage duration. Standardized preparations based on bee products are of great interest. The research carried out in this work is aimed at extending the shelf life of tomato fruits while maintaining their quality by heat treatment of tomatoes with a solution of a biological product (tincture of the biomass of the larvae of the greater wax moth) before storage. In the course of the study, it was found that such treatment prolongs the shelf life of blank tomatoes up to 50 days, which is 40 % longer compared to the control. It has been proven that fruits treated with a biological product demonstrate a low level of metabolic processes. This is due to the fact that the proposed treatment slows down the rate of accumulation and degradation of sugars and organic acids. In particular, in fruits treated with a biological product, the sugar content is 8.8–10.6 % higher than in the control. The rate of decrease in the level of titratable acidity in the variants treated with the biological product is 15–19 % slower than in the control. The above results indicate the effectiveness of the use of a biological product for storing tomato fruits in comparison with similar measures.

Author Biographies

Olesia Priss, Dmytro Motornyi Tavria State Agrotechnological University

Doctor of Technical Sciences, Professor

Department of Technology of Processing and Storage of Agricultural Products

Valentina Zhukova, Dmytro Motornyi Tavria State Agrotechnological University

PhD, Associate Professor

Department of Technology of Processing and Storage of Agricultural Products

Serhii Holiachuk, Lutsk National Technical University

PhD, Associate Professor

Department of Technologies and Equipment of Processing Industries

Tetiana Karman, Dmytro Motornyi Tavria State Agrotechnological University

PhD, Associate Professor

Department of Technology of Processing and Storage of Agricultural Products

References

  1. El Bilali, H., Callenius, C., Strassner, C., Probst, L. (2018). Food and nutrition security and sustainability transitions in food systems. Food and Energy Security, 8 (2), e00154. doi: http://doi.org/10.1002/fes3.154
  2. Lipinski, B., Hanson, C., Lomax, J., Kitinoja, L., Waite, R., and Searchinger, T. (2013). Reducing Food Loss and Waste. Working Paper, Installment 2 of Creating a Sustainable Food Future. Washington. Available at: https://pdf.wri.org/reducing_food_loss_and_waste.pdf
  3. Fabi, C., Cachia, F., Conforti, P., English, A., Rosero Moncayo, J. (2021). Improving data on food losses and waste: From theory to practice. Food Policy, 98, 101934. doi: http://doi.org/10.1016/j.foodpol.2020.101934
  4. Serdyuk, M., Baiberova, S., Gaprindashvili, N., Sukharenko, E. (2017). The effect of treatment wiih antioxidant compositionon on the number of standard fruits after the coid storage. Bulletin of the National Technical University «KhPI» Series: New Solutions in Modern Technologies, 23 (1245), 176–181. doi: http://doi.org/10.20998/2413-4295.2017.23.28
  5. Zahorko, N. P., Struchaiev, M. I., Tarasenko, V. H. (2018). Vyrobnytstvo aerovanykh zamorozhenykh produktiv. Visnyk Ukrainskoho viddilennia Mizhnarodnoi akademii ahrarnoi osvity, 6, 124–133.
  6. Capobianco-Uriarte, M. de las M., Aparicio, J., De Pablo-Valenciano, J., Casado-Belmonte, M. del P. (2021). The European tomato market. An approach by export competitiveness maps. PLOS ONE, 16 (5), e0250867. doi: http://doi.org/10.1371/journal.pone.0250867
  7. Priss, O., Kalytka, V. (2014). Enzymatic antioxidants in tomatoes and sweet bell pepper fruits under abiotic factors. Ukrainian Food Journal, 3 (4), 505–663.
  8. Erika, C., Griebel, S., Naumann, M., Pawelzik, E. (2020). Biodiversity in Tomatoes: Is It Reflected in Nutrient Density and Nutritional Yields Under Organic Outdoor Production? Frontiers in Plant Science, 11. doi: http://doi.org/10.3389/fpls.2020.589692
  9. Hasan, M. U., Riaz, R., Malik, A. U., Khan, A. S., Anwar, R., Rehman, R. N. U., Ali, S. (2021). Potential of Aloe vera gel coating for storage life extension and quality conservation of fruits and vegetables: An overview. Journal of Food Biochemistry, 45 (4). doi: http://doi.org/10.1111/jfbc.13640
  10. Romanazzi, G., Feliziani, E., Baños, S. B., Sivakumar, D. (2016). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57 (3), 579–601. doi: http://doi.org/10.1080/10408398.2014.900474
  11. Priss, O. P. (2017). Naukovi osnovy zberihannia plodovykh ovochiv z vykorystanniam obrobky biolohichno aktyvnymy rechovynamy. Kyiv, 45.
  12. Zhukova, V. F., Haprindashvili, N. A., Sukharenko, O. I., Koliadenko, V. V. (2019). Effect of antioxidant treatment of fruits on the quality preservation of tomato heterorosis sort with genes of lower reduction. Proceedings of the Tavria State agrotechnological university, 3 (19), 268–275.
  13. Ali, S., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., Ejaz, S., Sardar, H. (2020). Effect of pre‐storage ascorbic acid and Aloe veragel coating application on enzymatic browning and quality of lotus root slices. Journal of Food Biochemistry, 44 (3). doi: http://doi.org/10.1111/jfbc.13136
  14. Anjum, M. A., Akram, H., Zaidi, M., Ali, S. (2020). Effect of gum arabic and Aloe vera gel based edible coatings in combination with plant extracts on postharvest quality and storability of “Gola” guava fruits. Scientia Horticulturae, 271, 109506. doi: http://doi.org/10.1016/j.scienta.2020.109506
  15. Sanches, A. G., Costa, J. M., Silva, M. B., Moreira, E. G. S., Cosme, S. S. (2017). Tratamentos Químicos na Manutenção da Qualidade Pós-Colheita em Frutos de Pitanga (Eugenia uniflora L.). Nativa, 5 (4), 257–262. doi: http://doi.org/10.5935/2318-7670.v05n04a05
  16. Tykhonov, O. I., Konoshevych, L. V., Kudryk, B. T., Bobro, S. H. (2014). Relevance the creation in Ukraine drugs preparations of bee products (Apitherapy). Zbirnyk naukovykh prats spivrobitnykiv NMAPO im. P. L. Shupyka, 23 (3), 434–439. Available at: http://nbuv.gov.ua/UJRN/Znpsnmapo_2014_23%283%29__66
  17. Santos, E. X. D., Repolho, R. P. J., Sanches, A. G., Lima, K. S. (2020). The preservative effect of bee wax and calcium chloride coating on the quality and firmness of graviolas (Annonamuricata L.). MOJ Food Process Technol, 8 (2), 32–38.
  18. El-Moneim, E. A. A. Abd., Hany, M., Zeinab, A. Z., Abo, M. E. A. (2015). Effect of Honey and Citric Acid Treatments on Postharvest Quality of Fruits and Fresh-Cut of Guava. World Journal of Agricultural Sciences, 11, 255–267.
  19. Bohutska, O. Ye. (2020). Dosvid zastosuvannia lychynok vohnivky bdzholynoi ta trutnevoho rozplodu dlia stvorennia likarskykh zasobiv shyroko spektru farmakolohichnoi dii. Zastosuvannia metodiv likuvannia i apipreparativ u medychnii, farmatsevtychnii ta kosmetychnii praktytsi. Kharkiv: Vyd-vo NFaU, 64–65.
  20. Bohutska, O. Ye., Tykhonov, O. I. (2018). Lychynky vohnivky bdzholynoi – syrovyna dlia stvorennia preparativ dlia korektsii vikovykh zmin u orhanizmi. Kosmetolohiia ta aromolohiia: etapy stanovlennia i maibutnie. Kharkiv, 35.
  21. Chen, J., Shen, Y., Chen, C., Wan, C. (2019). Inhibition of Key Citrus Postharvest Fungal Strains by Plant Extracts In Vitro and In Vivo: A Review. Plants, 8 (2), 26. doi: http://doi.org/10.3390/plants8020026
  22. Shpychak, O. S. (2005). Rozrobka skladu ta tekhnolohii novoho kompleksnoho pryrodnoho preparatu z antymikrobnymy ta imunomoduliuiuchymy vlastyvostiamy. Kharkiv, 28.
  23. Priss, O. P. (2015). Chilling-injury reduction during the storage of tomato fruits by heat treatment with antioxidants. Eastern-European Journal of Enterprise Technologies, 1 (6 (73)), 38–43. doi: http://doi.org/10.15587/1729-4061.2015.37171
  24. Priss, O. P., Zhukova, V. F. (2013). Zalezhnist urozhainosti ta pokaznykiv yakosti plodiv tomata vid pohodnykh umov. Visnyk Poltavskoi derzhavnoi ahrarnoi akademii, 1, 49–51.
  25. Gautier, H., Diakou-Verdin, V., Bénard, C., Reich, M., Buret, M., Bourgaud, F. et. al. (2008). How Does Tomato Quality (Sugar, Acid, and Nutritional Quality) Vary with Ripening Stage, Temperature, and Irradiance? Journal of Agricultural and Food Chemistry, 56 (4), 1241–1250. doi: http://doi.org/10.1021/jf072196t
  26. Gruda, N. (2005). Impact of Environmental Factors on Product Quality of Greenhouse Vegetables for Fresh Consumption. Critical Reviews in Plant Sciences, 24 (3), 227–247. doi: http://doi.org/10.1080/07352680591008628
  27. Parisi, M., Giordano, L., Pentangelo, A., D’Onofrio, B., Villari, G. (2006). Effects of different levels of nitrogen fertilization on yield and fruit quality in processing tomato. Acta Horticulturae, 700, 129–132. doi: http://doi.org/10.17660/actahortic.2006.700.19
  28. Rosales, M. A., Cervilla, L. M., Sánchez-Rodríguez, E., Rubio-Wilhelmi, M. del M., Blasco, B., Ríos, J. J. et. al. (2010). The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 91 (1), 152–162. doi: http://doi.org/10.1002/jsfa.4166
  29. Bénard, C., Gautier, H., Bourgaud, F., Grasselly, D., Navez, B., Caris-Veyrat, C. et. al. (2009). Effects of Low Nitrogen Supply on Tomato (Solanum lycopersicum) Fruit Yield and Quality with Special Emphasis on Sugars, Acids, Ascorbate, Carotenoids, and Phenolic Compounds. Journal of Agricultural and Food Chemistry, 57 (10), 4112–4123. doi: http://doi.org/10.1021/jf8036374
  30. Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63 (1), 129–140. doi: http://doi.org/10.1016/j.postharvbio.2011.05.016
  31. Fernández-Ruiz, V., Sánchez-Mata, M. C., Cámara, M., Torija, M. E., Chaya, C., Galiana-Balaguer, L. et. al. (2004). Internal Quality Characterization of Fresh Tomato Fruits. HortScience, 39 (2), 339–345. doi: http://doi.org/10.21273/hortsci.39.2.339

Downloads

Published

2021-07-02

How to Cite

Priss, O., Zhukova, V., Holiachuk, S., & Karman, T. (2021). Effect of heat treatment with biopreparation on the quality of tomato fruit during storage. Technology Audit and Production Reserves, 3(3(59), 40–45. https://doi.org/10.15587/2706-5448.2021.235533

Issue

Section

Food Production Technology: Original Research