Development of the modeling methodology of surface shaping and thermal processes using S-functions

Authors

  • Анатолий Павлович Слесаренко A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Str. Dm. Pozharsky, 2/10, Kharkiv, Ukraine, 61046, Ukraine https://orcid.org/0000-0002-4860-8512
  • Юрий Владимирович Журавлёв Kharkiv National University of Civil Engineering and Architecture, Str. Sumska, 40, Kharkiv, 61002, Ukraine https://orcid.org/0000-0002-4911-8478
  • Владимир Борисович Жиленко Kharkiv National University of Civil Engineering and Architecture, Str. Sumska, 40, Kharkiv, 61002, Ukraine https://orcid.org/0000-0003-3650-8116

DOI:

https://doi.org/10.15587/2312-8372.2014.26367

Keywords:

modeling of thermal processes, solution structure, S-function, surface shaping

Abstract

Based on the solutions of inverse problems of differential geometry using S-functions, modeling methodology of shaping surfaces, described by weight functions that accurately describe the equations of complex boundaries was developed.

An algorithm of surface description in the complex area in the form of an inverted flat-bottom plate outside the boundary belt of the area was built. It has allowed to construct an approximate mathematical model of the thermal process using the proposed conservative solution structure of the heat conduction problem in such a way that it is fully consistent with the physical model of the thermal process, including the case, when the value of the heat transfer coefficient tends to infinity. The constructed analytical solution structure of the heat conduction problem exactly satisfies the Newton's boundary condition at any given values of the heat transfer coefficient and ambient temperature for complex areas. Conservativeness of the solution structure lies in the fact that it takes into account the influence of the boundary effects only in the boundary belt of the area of the problem solution.

Author Biographies

Анатолий Павлович Слесаренко, A.N. Podgorny Institute for Mechanical Engineering Problems of the National Academy of Sciences of Ukraine, Str. Dm. Pozharsky, 2/10, Kharkiv, Ukraine, 61046

Doctor of Physics and Mathematics, Professor, Senior Researcher, Laureate of State Prize of Ukraine

Department designs of authentication of thermal processes

 

Юрий Владимирович Журавлёв, Kharkiv National University of Civil Engineering and Architecture, Str. Sumska, 40, Kharkiv, 61002

Ph.D., Associate Professor, Professor of Department

Department of automation of production processes 

Владимир Борисович Жиленко, Kharkiv National University of Civil Engineering and Architecture, Str. Sumska, 40, Kharkiv, 61002

Engineer, Assistant

Head of the Laboratory of Electrical Engineering

Department of automation of production processes 

References

  1. Matsevytyi, Yu. M. (2002). Obratnye zadachy teploprovodnosty. T. 1: Metodolohyia. K.: Naukova dumka, 408.
  2. Matsevytyi, Yu. M. (2003). Obratnye zadachy teploprovodnosty. T. 2: Prylozhenyia. K.: Naukova dumka, 392.
  3. Samarskyy, A. A. (2003). Vychyslytel'naya teploperedachy. M.: Edytornal URSS, 784.
  4. Mareev, V. V., Stankova, E. N. (2012). Osnovy metodov konechnykh raznostey. Spb.: Yzd-vo S.-Peterb. Un-ta, 64.
  5. Chepachenko, Yu. Y.; In: Yvanytskyy, N. Y. (2012). Metod konechnykh raznostey dlya reshenyya uravnenyya teploprovodnosty. III Respublykanskaya studencheskaya konferentsyya "Novye materyaly y tekhnolohy ykh obrabotky", 23-27 aprelya 2012h. Mynsk: BNTU, 106.
  6. Slesarenko, A. P., Butenko, T. V. (2008). Modelyrovanye nelyneynykh teplovykh protsessov na baze sovmestnoho prymenenyya metoda vozmushchenyy, rehyonal'no-strukturnoho y varyatsyonnoho metodov. Informatsiyni tekhnolohiyi. Avtomatyzovani systemy upravlinnya. Seriya «Matematychne modelyuvannya», Vol. 10, № 833, 89-96.
  7. Slesarenko, A. P., Safonov, N. A. (2010). Ydentyfykatsyya nelyneynoy nestatsyonarnoy zavysymosty moshchnosty ystochnyka enerhyy ot temperature na baze varyatsyonno-strukturnoho y proektsyonnykh metodov. Problemy mashynostroenyya, T. 13, № 6, 58-63.
  8. Slesarenko, A. P. (2012). S-function in the inverse problems of analytical geometry and in modeling of heat processes. Eastern-European Journal Of Enterprise Technologies, 3(4(51)), 41-46.
  9. Slesarenko, A. P. (2012). S-functions in the conservative structures construction for geometric inverse boundary value problems solving. Eastern-European Journal Of Enterprise Technologies, 2(4(56)), 60-66.
  10. Choi, I. G. (1990). Mathematical modeling of radioactive waste glass melter. Conference: Symposium on nuclear waste management, Cincinnati, OH (United States), 28 Apr - 2 May 1991. United States: DOE; USDOE, Washington, DC. Available: http://www.osti.gov/scitech/servlets/purl/5637005.
  11. Brebyya K. (1987). Metody hranychnykh elementov. M.: Myr, 524.

Published

2014-07-24

How to Cite

Слесаренко, А. П., Журавлёв, Ю. В., & Жиленко, В. Б. (2014). Development of the modeling methodology of surface shaping and thermal processes using S-functions. Technology Audit and Production Reserves, 4(1(18), 48–53. https://doi.org/10.15587/2312-8372.2014.26367

Issue

Section

Technology audit