Isomolar series methodology in sensory analysis of fish culinary products for HEALTHY-CAFE

Authors

DOI:

https://doi.org/10.15587/2706-5448.2023.293826

Keywords:

isomolar series, sensory analysis, fish products, HELTHY-CAFE, nutritional value, histamine, complex formation, hydrocolloids

Abstract

The object of research is the technology of fish products for HELTHY-CAFE with regulated histamine content for the development of health food diets for the population. One of the most problematic places in the technology of food products from raw materials of aquatic origin is microbiological spoilage and, as a result, the formation and accumulation of HisA, which in a certain amount causes a toxic effect.

In the course of the study, the methods of isomolar series, sensory analysis, and the study of quality indicators were used. The methodology chosen in the work allows to determine the optimal ratio of hydrocolloids in the system for maximum complexation with histamine in the technology of fish culinary products in gelatin fillings with a harmonious sensory profile and adjustable histamine content.

The obtained results of the conducted research allow to state that the proposed method of determining the optimal ratio of sodium alginate and low-esterified pectin substances contributes to the development of a gelatinous filling for fish culinary products in order to ensure the harmonious flavor of ready-made fish dishes and contributes to the expansion of the range of fish products for HELTHY-CAFE with functional and preventive properties. This is due to the fact that taking into account the modern trends in nutrition regarding the safety, functionality, palatability, and attractiveness of fish food products made it possible, based on the method of isomolar series and sensory analysis, to scientifically substantiate the optimal ratio of plant biopolymers, to form requirements for the texture of gelatin filling in fish technology culinary products. On the basis of previous experimental studies, it was shown that the accumulation of histamine occurs more actively in sea fish, which made it possible to substantiate the choice of raw materials for the production of fish culinary products. Taking into account the main global trends in the development of aquaculture, it is proposed to use crucian carp as a raw material, as the main object of aquaculture in Ukraine. The low activity of the peptide hydrolase complex of the muscle tissue of the carp, compared to sea fish, contributes to the formation of a harmonious aromatic profile of fish culinary products, which corresponds to consumer expectations, and the use of natural hydrocolloids of vegetable origin to form a gelatinous structure provides functional properties to the food product and allows controlling the histamine content.

Author Biographies

Tatiana Manoli, Odesa National University of Technology

PhD, Associate Professor

Department of Wine Technology and Sensory Analysis

Tatiana Nikitchina, Odessa National Academy of Food Technologies

PhD, Associate Professor

Department of Hotel and Catering Business

Natalia Kameneva, Odesa National University of Technology

Doctor of Agricultural Sciences, Professor

Department of Wine Technology and Sensory Analysis

Yana Barysheva, Odesa National University of Technology

Postgraduate Student

Department of Bioengineering and Water

Viktoria Deli, Odesa National University of Technology

PhD, Senior Lecturer

Department of Wine Technology and Sensory Analysis

References

  1. SanPiN 197-2003 (2003). Derzhavni sanitarni pravyla i normy dlia pidpryiemstv i suden, shcho vyrobliaiut produktsiiu z ryby i inshykh vodnykh zhyvykh resursiv.
  2. Bezusov, A., Manoli, T., Nikitchina, T., Barysheva, Ya. (2019). To the question of the formation of biogenic amines in food products. Scientific Works, 82 (2), 40–46. doi: https://doi.org/10.15673/swonaft.v82i2.1152
  3. Barysheva, Ya. O., Manoli, T. A., Nikitchina, T. I., Menchynska, A. A. (2019). Vplyv tekhnolohichnykh faktoriv na riven histaminu rybnykh produktiv u drahlepodibnii zalyvtsi. Prodovolcha industriia APK, 1-2, 13–16.
  4. Chekman, I. S., Horchakova, N. O., Kozak, P. I. et al.; Chekman, I. S. (Ed.) (2017). Farmakolohiia. Vinnitsia: Nova Knyha, 784.
  5. Shashank, A., Gupta, A. K., Singh, S., Ranjan, R. (2021). Biogenic Amines (BAs) in Meat Products, Regulatory Policies, and Detection Methods. Current Nutrition & Food Science, 17 (9), 995–1005. doi: https://doi.org/10.2174/1573401317666210222105100
  6. Schirone, M., Esposito, L., D’Onofrio, F., Visciano, P., Martuscelli, M., Mastrocola, D., Paparella, A. (2022). Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods, 11 (6), 788. doi: https://doi.org/10.3390/foods11060788
  7. Horbachov, M. A., Nikitchina, A. O., Manoli, T. A., Barysheva, Ya. O. (2019). Udoskonalennia tekhnolohii rybnykh snekiv z prisnovodnoi ryby. Rekomendovano do druku Vchenoiu radoiu fakultetu kharchovykh tekhnolohii ta upravlinnia yakistiu produktsii APK Natsionalnoho universytetu bioresursiv i pryrodokorystuvannia Ukrainy (protokol 8 vid 16.04. 2019 roku), 119.
  8. Kandasamy, S., Yoo, J., Yun, J., Kang, H. B., Seol, K.-H., Ham, J.-S. (2021). Quantitative Analysis of Biogenic Amines in Different Cheese Varieties Obtained from the Korean Domestic and Retail Markets. Metabolites, 11 (1), 31. doi: https://doi.org/10.3390/metabo11010031
  9. Slozko, I. V., Bielikova, M. V. Histamin ta yoho rol v zhytti suchasnoi liudyny. Studentska nauka v sferi fizychnoi kultury i sportu: suchasni trendy, 84–89. Available at: https://uni-sport.edu.ua/sites/default/files/vseDocumenti/zbirka_konferenciyi_03.04.2020_chastyna_2.pdf#page=84
  10. Omer, A. K., Mohammed, R. R., Ameen, P. S. M., Abas, Z. A., Ekici, K. (2021). Presence of Biogenic Amines in Food and Their Public Health Implications: A Review. Journal of Food Protection, 84 (9), 1539–1548. doi: https://doi.org/10.4315/jfp-21-047
  11. Kharchenko, O. O., Hulich, M. P., Yashchenko, O. V., Moiseienko, I. Ye., Liubarska, L. C. (2021). Determination of histamine in fish and fish products: validation of photometric method. Environment & Health, 4 (101), 58–61. doi: https://doi.org/10.32402/dovkil2021.04.058
  12. Maidannyk, V. H., Smiian, O. I., Bynda, T. P., Savelieva-Kulyk, N. O., Saveleva-Kulyk, N. O. (2014). Vehetatyvni dysfunktsii u ditei. Sumy: SumDU, 186. Available at: https://essuir.sumdu.edu.ua/handle/123456789/37461
  13. von Braun, J., Afsana, K., Fresco, L. O., Hassan, M. H. A. (2023). Food Systems: Seven Priorities to End Hunger and Protect the Planet. Science and Innovations for Food Systems Transformation. Cham: Springer International Publishing, 3–9. doi: https://doi.org/10.1007/978-3-031-15703-5_1
  14. Assuring food safet and quality: Guidelines for strengthening national food control systems. Report No. 76 (2003). FAO. Rome. Available at: http://www.fao.org/3/a-y8705e.pdf
  15. Fung, F., Wang, H.-S., Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41 (2), 88–95. doi: https://doi.org/10.1016/j.bj.2018.03.003
  16. King, T., Cole, M., Farber, J. M., Eisenbrand, G., Zabaras, D., Fox, E. M., Hill, J. P. (2017). Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science & Technology, 68, 160–175. doi: https://doi.org/10.1016/j.tifs.2017.08.014
  17. DeBeeR, J., Bell, J. W., Nolte, F., Arcieri, J., Correa, G. (2021). Histamine Limits by Country: A Survey and Review. Journal of Food Protection, 84 (9), 1610–1628. doi: https://doi.org/10.4315/jfp-21-129
  18. Bezusov, A. T., Nikitchina, T. I., Barysheva, Ya. O., Peretiaka, N. O. (2020). Current trends in fish products technology with control of biogenic amin content. Intellectual capital is the foundation of Innovative development: monografische Reihe «Europaische Wissenschaft». Buch 3. Teil 3. Karlsruhe: ScientificWorld-NetAkhatAV, 175. Available at: https://www.sworld.com.ua/index.php/secciisge3-1/32831-sge4-060
  19. Hungerford, J. M. (2010). Scombroid poisoning: A review. Toxicon, 56 (2), 231–243. doi: https://doi.org/10.1016/j.toxicon.2010.02.006
  20. Doeun, D., Davaatseren, M., Chung, M.-S. (2017). Biogenic amines in foods. Food Science and Biotechnology, 26 (6), 1463–1474. doi: https://doi.org/10.1007/s10068-017-0239-3
  21. Barbieri, F., Montanari, C., Gardini, F., Tabanelli, G. (2019). Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods, 8 (1), 17. doi: https://doi.org/10.3390/foods8010017
  22. Visciano, P., Schirone, M., Paparella, A. (2020). An Overview of Histamine and Other Biogenic Amines in Fish and Fish Products. Foods, 9 (12), 1795. doi: https://doi.org/10.3390/foods9121795
  23. Guergué-Díaz de Cerio, O., Barrutia-Borque, A., Gardeazabal-García, J. (2016). Scombroid Poisoning: A Practical Approach. Actas Dermo-Sifiliográficas, 107 (7), 567–571. doi: https://doi.org/10.1016/j.adengl.2016.06.003
  24. Sánchez-Pérez, S., Comas-Basté, O., Veciana-Nogués, M. T., Latorre-Moratalla, M. L., Vidal-Carou, M. C. (2021). Low-Histamine Diets: Is the Exclusion of Foods Justified by Their Histamine Content? Nutrients, 13 (5), 1395. doi: https://doi.org/10.3390/nu13051395
  25. Schirone, M., Visciano, P., Tofalo, R., Suzzi, G. (2016). Histamine Food Poisoning. Histamine and Histamine Receptors in Health and Disease, 217–235. doi: https://doi.org/10.1007/164_2016_54
  26. Chung, B. Y., Park, S. Y., Byun, Y. S., Son, J. H., Choi, Y. W., Cho, Y. S. et al. (2017). Effect of Different Cooking Methods on Histamine Levels in Selected Foods. Annals of Dermatology, 29 (6), 706. doi: https://doi.org/10.5021/ad.2017.29.6.706
  27. Manoli, T., Nikitchina, T., Tkachenko, O., Kameneva, N., Barysheva, Y., Myroshnichenko, O., Titlova, O. (2022). Application of sensor analysis methodology in fish snacks technology for express bars with regulated histamine content. Technology Audit and Production Reserves, 6 (3 (68)), 29–35. doi: https://doi.org/10.15587/2706-5448.2022.269017
  28. Barysheva, Y., Glushkov, O., Manoli, T., Nikitchina, T., Bezusov, A. (2017). Substantiation of hot smoking parameters based on sensory researches in hot fish marinades technology in the jelly pouring. EUREKA: Life Sciences, 5, 33–38. doi: https://doi.org/10.21303/2504-5695.2017.00420
  29. Barysheva, Y., Glushkov, O., Manoli, T., Nikitchina, T., Bezusov, A. (2017). A technology developed to produce hot fish marinades for a jellylike filling of prolonged storage. Eastern-European Journal of Enterprise Technologies, 5 (11 (89)), 40–45. doi: https://doi.org/10.15587/1729-4061.2017.110117
  30. Manoli, T., Nikitchina, T., Menchinska, A., Cui, Zh., Barysheva, Ya. (2021). The potential of uronide hydrocolloids for the formation of sensory characteristics of health products from hydrobionts. Food Science and Technology, 15 (2). doi: https://doi.org/10.15673/fst.v15i2.2111
  31. Sydorenko, O., Moskaliuk, R., Droba, N. (2009). Reolohichni vlastyvosti stabilizatsiinykh system dlia zalyvnykh rybnykh produktiv. Tovary i rynky, 2, 135–142.
  32. Pyvovarov, P. P., Hrynchenko, N. H. (2003). Perspektyvy vykorystannia heleutvoriuiuchykh polisakharydiv u tekhnolohii restrukturovanoi rybnoi produktsii. Upravlinski ta tekhnolohichni aspekty rozvytku pidpryiemstv kharchuvannia ta torhivli. Kharkiv: KhDUKhT, 46–48.
  33. Bogomolova, V., Vinnov, A. (2011). Zheliruiushchie zalivki dlia rybnykh konservov. Prodovolcha іndustrіia APK, 2, 15–17.
  34. Buzash, V. M., Chundak, S. Yu. (2003). Spectraphotometric investigation of complex formation iron(III) salts with adamantyl-1-hydroxamic acid in the alcogol and aqua-alcogol solution. Naukovyi visnyk Uzhhorodskoho universytetu: seriia: Khimiia, 10, 94–100. Available at: https://dspace.uzhnu.edu.ua/jspui/handle/lib/18095
  35. Nagypál, I., Beck, M. T., Zuberbühler, A. D. (1983). Necessary and sufficient conditions for the appearance of extrema on concentration distribution curves in complex equilibrium systems. Talanta, 30 (8), 593–603. doi: https://doi.org/10.1016/0039-9140(83)80138-6
  36. Bent, H. A. (1968). Structural chemistry of donor-acceptor interactions. Chemical Reviews, 68 (5), 587–648. doi: https://doi.org/10.1021/cr60255a003
Isomolar series methodology in sensory analysis of fish culinary products for HEALTHY-CAFE

Downloads

Published

2023-12-22

How to Cite

Manoli, T., Nikitchina, T., Kameneva, N., Barysheva, Y., & Deli, V. (2023). Isomolar series methodology in sensory analysis of fish culinary products for HEALTHY-CAFE. Technology Audit and Production Reserves, 6(3(74), 37–42. https://doi.org/10.15587/2706-5448.2023.293826

Issue

Section

Food Production Technology