Means for building of mathematical models of optimization placement problems in the interval spaces

Authors

DOI:

https://doi.org/10.15587/2312-8372.2014.34633

Keywords:

geometric design, interval geometry, interval mathematical model of optimization problem of placement

Abstract

The research is devoted to the development of modern design tools for building of mathematical models of geometric objects and relationships of geometric objects interval spaces and their use in constructing the interval mathematical models of optimization problems of geometric design in interval space. The result of research is the further development of interval geometry theory: three-dimensional and multi-dimensional interval metric spaces introduced new concepts formulated statements that create a new modern design tools for modeling of optimization problems of geometric design, taking into account the errors of initial data. It is building an interval surfaces. Their interval equations are involved in analytical description of the boundaries of the interval object. It is defined an interval geometric objects as mathematical models of geometric objects in Euclidean spaces. Their metric features and placement parameters have errors.

The obtained new science-based development in the theory of geometric design and geometry provide a solution of interval important applied problems of accounting errors in modeling and solving of optimization problems of geometric design. They are a significant achievement for the development of optimal geometric design.

Author Biography

Людмила Григорівна Євсеєва, Poltava interregional higher vocational school, st. Bіryuzova 64 a, Poltava, Ukraine, 36009

Candidate of Physical and Mathematical Sciences, Associate Professor

References

  1. Stoyan, Yu. G., Yakovlev, S. V. (1986). Matematicheskie modeli i optimizatsionnye metody geometricheskogo proektirovaniia. Kiev: Naukova dumka, 268.
  2. Stoyan, Yu. G., Romanova, T. E., Chernov, N. I., Pankratov, A. V. (2010). Polnyi klass Ф-funktsii dlia bazovyh dvumernyh φ-obiektov. Dopovіdі NAN Ukrayni. Ser. A, № 12, 25–30.
  3. Stoyan, Yu. G., Pankratov, A. V. (2001). Local Optimization Method in Placement Problems of Polygons. Dopovіdі NAN Ukrayni. Ser. A, № 9, 98–103.
  4. Stoyan, Y., Terno, J., Gil, M., Romanova, T., Scheithauer, G. (2002). Construction of a Φ-function for two convex polytopes. Applicationes Mathematicae, Vol. 29, № 2, 199–218. doi:10.4064/am29-2-6
  5. Stoyan, Y., Yas’kov, G. (2004, August). A mathematical model and a solution method for the problem of placing various-sized circles into a strip. European Journal of Operational Research, Vol. 156, № 3, 590–600. doi:10.1016/s0377-2217(03)00137-1
  6. Stoyan, Y., Yaskov, G. (1998, January 10). Mathematical model and solution method of optimization problem of placement of rectangles and circles taking into account special constraints. International Transactions in Operational Research, Vol. 5, № 1, 45–57. doi:10.1016/s0969-6016(98)00003-3
  7. Milenkovic, V., Sacks, E. (2010, August). Two approximate Minkowski sum algorithms. International Journal of Computational Geometry & Applications, Vol. 20, № 04, 485–509. doi:10.1142/s0218195910003402
  8. Bennell, J. A., Oliveira, J. F. (2008, January). The geometry of nesting problems: A tutorial. European Journal of Operational Research, Vol. 184, № 2, 397–415. doi:10.1016/j.ejor.2006.11.038
  9. Birgin, E. G., Martı́nez, J. M., Ronconi, D. P. (2005, January). Optimizing the packing of cylinders into a rectangular container: A nonlinear approach. European Journal of Operational Research, Vol. 160, № 1, 19–33. doi:10.1016/j.ejor.2003.06.018
  10. Milenkovic, V. J., Daniels, K. (1999, September). Translational polygon containment and minimal enclosure using mathematical programming. International Transactions in Operational Research, Vol. 6, № 5, 525–554. doi:10.1111/j.1475-3995.1999.tb00171.x
  11. Bennell, J., Scheithauer, G., Stoyan, Y., Romanova, T. (2008, November 7). Tools of mathematical modeling of arbitrary object packing problems. Annals of Operations Research, Vol. 179, № 1, 343–368. doi:10.1007/s10479-008-0456-5
  12. Moore, R. E. (1966). Interval analysis. N.Y.: Prentice-Hall, 400.
  13. Kaucher, E. (1980). Interval Analysis in the Extended Interval Space IR. Fundamentals of Numerical Computation (Computer-Oriented Numerical Analysis). Computing Supplementum, Vol. 2, 33–49. doi:10.1007/978-3-7091-8577-3_3
  14. Kalmykov, S. A., Shokin, Yu. I., Yuldashev, Z. H. (1986). Metody interval'nogo analiza. Novosibirsk: Nauka, 224.
  15. Alefeld, G., Hertsberger, Yu. (1987). Vvedenie v interval'nye vychisleniia. M.: Mir, 356.
  16. Markov, S. M. (1992). Extended interval arithmetic involving infinite intervals. Mathematica Balkanika, № 6, 269-304.
  17. Shary, S. P. (1994). Solving the tolerance problem for interval linear equations. Interval Computations, № 2, 6-26.
  18. Stoyan, Yu. G. (2006). Vvedennia v іnterval'nu heometrіiu. Kh.: KhNURE, 98.
  19. Stoyan, Yu. G. (1996). Metricheskoe prostranstvo tsentrirovannyh intervalov. Doklady NAN Ukrainy. Ser. A, № 7, 23–25.
  20. Stoyan, Yu. G. (1996). Interval'nye otobrazheniia. Dopovіdі NAN Ukrayni, № 10, 57-63.
  21. Stoyan, Yu. G., Romanova, T. E. (1998). Account of errors in optimization placement problem. Problemy mashinostroeniia, T. 1, № 2, 31-41.
  22. Romanova, T. E. (2000). Interval'noe prostranstvo InsR. Doklady NAN Ukrainy, № 9, 36-41.
  23. Stoyan, Y., Gil, M., Terno, J., Scheithauer, G. (2004). Phi-function for complex 2D objects. 4OR QUarterly JoUrnal of the Belgian, French and Italian Operations Research Societies, T. 2, № 1, 69-84.
  24. Yevseeva, L. G. (2008). Matematicheskaia model' i metod resheniia zadachi upakovki interval'nyh parallelepipedov. Doklady NAN Ukrainy, № 2, 48–53.
  25. Yevseeva, L. G., Yas'kov, G. N. (2008). Zadacha upakovki interval'nyh krugov. Eastern-European Journal of Enterprise Technologies, 1(4(31)), 25–29.
  26. Yevseeva, L. G., Glushko, Yu. Yu. (2013). Zadacha upakovki interval'nyh mnogougol'nikov. Tezi dopovіdei XІ mіzhnarodnoi naukovo-praktichnoi konferentsіi "Matematichne ta programne zabezpechennia іntelektual'nih sistem", Ukrayna, Dnіpropetrovs'k, 2013 r., 274–275.
  27. Yevseeva, L. G., Chugai, A. N. (2007). Zadacha upakovki interval'nyh tsilindrov v interval'nuiu prizmu. Sistemi upravlіnnia, navіgatsіi ta zviazku. Kiyv, 121–128.
  28. Yevseeva, L. G., Yas'kov, G. N. (2010). Zadacha upakovki bol'shogo chisla interval'nyh sharov v interval'nuiu tsilindricheskuiu oblast'. Prikladnaia geometriia i inzhenernaia grafika, V. 85, 306–312.
  29. Yevseeva, L. G., Yas'kov, G. N. (2010). Primenenie interval'nogo modelirovaniia v poroshkovoi metallurgii. Radіoelektronnі і kompiuternі sistemi, № 7 (48), 95–98.
  30. Іnterval'ne matematichne modeliuvannia optimіzatsіinoi zadachі pakuvannia mnogogrannikіv. (2009). Materіali III mіzhnarodnoi naukovo-tehnіchnoi konferentsіi «Kompiuterna matematika v іnzhenerіi, nautsі ta osvіtі», (CMSEE-2009), Ukrayna, Poltava, 2009 r., 40-41.
  31. Stoyan, Yu. G., Pankratov, O. V., Yevseeva, L. G. (25.06.2008). A. s. № 24827 Ukrayna. Kompiuterna programa “Packing of Interval Parallelepipeds”. Appl. 01.04.2008.
  32. Pankratov, O. V., Yevseeva, L. G. (28.08.2008). A. s. № 25506 Ukrayna. Kompiuterna programa “Packing of Interval Polygons”. Appl. 12.07.2008.
  33. Stoyan, Yu. G., Yevseeva, L. G., Yas'kov, G. N. (23.01.2009). A. s. № 27362 Ukrayna. Kompiuterna programa “Imitatsionnoe modelirovanie svoistv splava”. Appl. 30.12.2008.

Published

2014-12-23

How to Cite

Євсеєва, Л. Г. (2014). Means for building of mathematical models of optimization placement problems in the interval spaces. Technology Audit and Production Reserves, 6(3(20), 66–73. https://doi.org/10.15587/2312-8372.2014.34633

Issue

Section

Information technology and control systems