Study of the double rebuilding effect of the nonstationary longitudinal wave in rod with rectangular cross section

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.41062

Keywords:

asymptotic-group, dynamic load, wave front, quasifront, non-stationary wave

Abstract

The article investigates obtained by the author new effect of a dual modification of non-stationary wave in a rod with rectangular cross section. The dynamics of rod is described by derived earlier improved one-dimensional dynamic equations of the longitudinal deformation. This equations were got basis on strict mathematical algorithm (so-called non-minimal simplification of the three-dimensional dynamic equations of the theory of elasticity) – “asymptotic-group” analysi.
On the solutions of mentioned equations were built graphs of the longitudinal wave distribution in the rod. Analysis of them allowed to describe tridimentionality of the process. At the same time the transfer of three-dimensional state of strain to one-dimensional classic case followed by arising of the appropriate quasifronts is studied.
Also must pay attention to the fact that all wave fronts velocities are the same as in the problems of theory of elasticity.

Author Biography

Лариса Николаевна Егармина, Zaporozhye State Engineering Academy, Lenin avenue, 226, Zaporozhye, Ukraine, 69006

Candidate of Technical Sciences, Associate Professor, Acting Head of Department

Department of The Higher and Applied Mathematics

References

  1. Babakov, I. M. (1968). Teoriia kolebanii. M.: Nauka, 559.
  2. Vekua, I. N. (1937). K voprosu rasprostraneniia uprugih voln v beskonechnom sloe, ogranichennom dvumia parallel'nymi ploskostiami. Tr. Tbilissk. Geofizich. In-ta, Vol. 2, 23–50.
  3. Slepian, L. I. (1972). Nestatsionarnye uprugie volny. L.: Sudostroenie, 376.
  4. Shamrovskyi, O. D., Veselov, A. I., Lymarenko, Yu. O. (2008). Dyskretna model poshyrennia nestatsionarnoi podovzhnoi khvyli v pruzhnomu sterzhni. Novi materialy ta tekhnolohii v metalurhii ta mashynobuduvanni, 1, 98-102.
  5. Shamrovskii, A. D., Egarmina, L. N. (2009). Vyvod dinamicheskih uravnenii prodol'noi deformatsii sterzhnia pri pomoshchi dvoinogo uproshcheniia uravnenii teorii uprugosti. Novi materialy ta tekhnolohii v metalurhii ta mashynobuduvanni, 2, 111-115.
  6. Shamrovskii, A. D., Egarmina, L. N. (2010). Modelirovanie rasprostraneniia prodol'noi volny v sterzhne s pomoshch'iu utochnennyh dinamicheskih uravnenii. Novi materialy ta tekhnolohii v metalurhii ta mashynobuduvanni, 2, 139-145.
  7. Timoshenko, S. P. (1967). Kolebaniia v inzhenernom dele. M.: Nauka, 444.
  8. Shamrovskii, A. D. (1997). Asimptotiko-gruppovoi analiz differentsial'nyh uravnenii teorii uprugosti. Zaporozh'e: ZGIA, 169.
  9. Skrypnik, I. A., Shamrovskii, A. D. (1995). Dvumernoe modelirovanie trehmernyh prodol'nyh voln v ploskom sloe. Matematicheskoe modelirovanie fiziko-matematicheskih polei i intensifikatsiia promyshlennogo proizvodstva. Zaporozh'e, 43–50.
  10. Skrypnik, I. A., Shamrovskii, A. D. (1995). Graficheskoe modelirovanie volnovyh protsessov v plastinah i obolochkah. Tez. dokl. Mezhdun. prakt. konf. Sovremennye problemy geometricheskogo modelirovaniia. Melitopol', 164.

Published

2015-04-02

How to Cite

Егармина, Л. Н. (2015). Study of the double rebuilding effect of the nonstationary longitudinal wave in rod with rectangular cross section. Technology Audit and Production Reserves, 2(5(22), 8–11. https://doi.org/10.15587/2312-8372.2015.41062

Issue

Section

Mathematical Modeling: Original Research