Approximate solution of the Navier-Stokes equation for digonal ducts

Authors

  • Олена Миколаївна Гумен National Technical University of Ukraine "Kyiv Polytechnic Institute", Peremohy 37, Kyiv, 03056, Ukraine https://orcid.org/0000-0003-3992-895X
  • Віктор Олександрович Мілейковський Kyiv National University of Construction and Architecture, Povitroflotskyi prosp., 31, Kyiv, 03680, Ukraine https://orcid.org/0000-0001-8543-1800
  • Володимир Григорович Дзюбенко Kyiv National University of Construction and Architecture, Povitroflotskyi prosp., 31, Kyiv, 03680, Ukraine https://orcid.org/0000-0003-2468-2555

DOI:

https://doi.org/10.15587/2312-8372.2015.41212

Keywords:

laminar flow, digonal duct, heat utilization, polymer film, polymer heat exchanger, underground water

Abstract

This article presents the analysis of the pressure laminar flow in the digonal duct with the section formed by two equal arcs. Such ducts are used in soft film heat exchangers. In addition, they are formed in rocks for underground water. The first attempt was to perform the analysis similarly to flows in round pipes. This direction gives wrong parabolic velocity profile with a rib at the long axis of the digonal section. In addition, it causes pressure drop calculation results understated up to 14,3 %. Therefore, to obtain adequate results we need to solve the Navier-Stokes equation. We propose a grid with unequal steps for this kind of section and solve the equation numerically. The convergence is very quick. For most of the tasks, it is enough to use a 4×4 grid. To integrate the profile in case of very quick convergence and a sparse grid the interpolation with the highest possible order is required. We introduce a new coordinate system to map the digonal section to a rectangle. We perform polynomial interpolation of all nodes in the new coordinate system. The integration of this polynomial cause velocity field coefficient to converge on the 4×4 grid for most of the tasks (the error does not exceed 2,2 % compared to the 100×100 grid). We show possibility of pressure drop calculation with the same formula as for the round pipes with the error of  no more than 2,86 %. However, we offer equations for more precise calculations of the pressure drop and velocity field coefficient.

Author Biographies

Олена Миколаївна Гумен, National Technical University of Ukraine "Kyiv Polytechnic Institute", Peremohy 37, Kyiv, 03056

Doctor of Technical Science, Professor, Member of International Society for Geometry and Graphics (ISGG)

Department of descriptive geometry, engineering and computer graphics

 

Віктор Олександрович Мілейковський, Kyiv National University of Construction and Architecture, Povitroflotskyi prosp., 31, Kyiv, 03680

Candidate of Technical Sciences, Associate Professor, Member of International Society for Geometry and Graphics (ISGG)

Department of heat gas supply and ventilation

Володимир Григорович Дзюбенко, Kyiv National University of Construction and Architecture, Povitroflotskyi prosp., 31, Kyiv, 03680

Senior Lecturer, Colonel

Department of labour and environment protection

References

  1. Kezlia, Е. А. (1988). Vozdukhonagrevatel iz polimernoi plenki dlia sistem vozdushnogo otopleniia teplits. Kyiv, 20.
  2. Alishaev, М. G. (2013). Tochnye resheniia laminarnogo dvizheniia viazkoi zhidkosti po priamolineinym trubam nekruglykh sechenii. Dagestanskie elektronnye matematicheskie izvestiia, Vol. 1, 88-102. Available: http://mathreports.ru/static?id=130
  3. Khmelnik, S. I. (2010). Uravnenie Navie-Stoksa. Sushchestvovanie i metod poiska globalnogo resheniia. Izrail: MiC, 108.
  4. Aliamovskii, А. А., Sobachkin, А. А., Odintsov, Е. V., Kharitonovich, А. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Kompiuternoe modelirovanie v inzhenernoi praktike. Spb.: BKHV-Peterburg, 1040.
  5. Ströher, G. R., Nicoleti, J. F., Zaparoli, E. L., Ströher, G. L., Andrade, C. R. de. (2011, September 20). Avaliação de modelos RANS de turbulência para o problema de jato livre circular axissimétrico. Acta Scientiarum. Technology, Vol. 33, № 4, 425-433. doi:10.4025/actascitechnol.v33i4.8312
  6. Topcu, O. (2012). CFD-DP Modeling of Multiphase Flow in Dense Medium Cyclone. CFD Letters, 4 (1), 33-42.
  7. Subodh Bahirat, Joshi, P. V. (2014). CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations. International Journal of Engineering Research and Applications, Vol. 4, 8, 116-125.
  8. Al-Dulaimy, F. M. (2013). Assessment of two phase flow in a venture convergent- divergent nozzle. Tikrit Journal of Engineering Science, Vol. 15, № 2, 17-31.
  9. Saeed Baghdar Hosseini, Mahdi Ahmadvand, Ramin Haghighi Khoshkhoo, Hassan Khosravi. (2013). The Experimental and Simulations Effect of Air Swirler on Pollutants from Biodiesel Combustion. Research Journal of Applied Sciences, Engineering and Technology, Vol. 5, № 18, 4556-4562.
  10. Kayne, A., Agarwal, R. (2013). Computational fluid dynamics modeling of mixed convection flows in buildings enclosures. International Journal of Energy and Environment, Vol. 4, № 6, 911-932. doi:10.1115/es2013-18026
  11. Pimpun Tongpun, Eakarach Bumrungthaichaichan, Santi Wattananusorn. (2014). Investigation of entrance length in circular and noncircular conduits by computational fluid dynamics simulation. Songklanakarin Journal of Science and Technology, Vol. 36, № 4, 471-475.
  12. Rajat Gupta, Rituraj Gautam, Siddhartha Sankar Deka. (2014). CFD study of a twisted blade H-Darrieus wind turbine. International Journal of Energy and Environment, Vol. 5, № 4, 505-520.
  13. Cheng, W., Nie, W., Zhou, G., Yang, J. (2013, February 1). Research on Eddy Air-Curtain Dust Controlled Flow Field in Hard Rock Mechanized Driving Face. Journal of Networks, Vol. 8, № 2, 453-460. doi:10.4304/jnw.8.2.453-460
  14. Li, Z., Agarwal, R., Gao, H. (2013). Development of DMC controllers for temperature control of a room deploying the displacement ventilation HVAC system. International Journal of Energy and Environment, Vol. 4, № 3, 415-426. doi:10.1115/es2012-91007
  15. Hallanger, A., Sand, I. O. (2013). FD Wake Modelling with a BEM Wind Turbine Sub-Model. Modeling, Identification and Control: A Norwegian Research Bulletin, Vol. 34, № 1, 19–33. doi:10.4173/mic.2013.1.3
  16. Ramzi, M., AbdErrahmane, G. (2013). Passive Control via Slotted Blading in a Compressor Cascade at Stall Condition. Journal of Applied Fluid Mechanics, Vol. 6, № 4, 571-580.
  17. Harinaldi, Budiarso, Warjito, Engkos Achmad Kosasih, Rustan Tarakka, Sabar Pangihutan Simanungkalit, I Gusti Made Fredy Lay Teryanto. (2012). Modification of flow structure over a van model by suction flow control to reduce aerodynamics drag. Makara Seri Teknologi, Vol. 16, № 1, 15-21. doi:10.7454/mst.v16i1.1021
  18. Khudheyer, A. F., Mahmoud, M. Sh. (2011). Numerical analysis of fin-tube plate heat exchanger by using CFD technique. Journal of Engineering and Applied Sciences, Vol. 6, № 7, 1-12.
  19. Marzouk, O. A., Huckaby, E. D. (2010). Simulation of a Swirling Gas-Particle Flow Using Different k-epsilon Models and Particle-Parcel Relationships. Engineering Letters, Vol. 18, № 1, 56-67.
  20. Aliamovskii, А. А. (2010). SolidWorks Simulation. Kak reshat prakticheskie zadachi. Spb., BKHV-Peterburg, 448.
  21. Mooney, K., Höpken, J., Maric, T. (2014). Getting Started with OpenFOAM Technology. Birmingham-Mumbai: PACKT Publishing, 59. Available: https://www.safaribooksonline.com/library/view/getting-started-with/9781782161769/
  22. Babenko, К. I. (2002). Ocnovy chislennogo analiza. М.-Izhevsk: NITS “Reguliarnaia i khaoticheskaia dinamika”, 848.
  23. Alekseev, Е. R., Chesnokova, О. V., Rudchenko, Е. А. (2008). Scilab: Reshenie inzhenernykh i matematicheskikh zadach. Мoskva: ALT Linux; BINOM. Laboratoriia znaniy, 260.
  24. Chichkarev, Е. А. (2012). Kompiuternaia matematika s Maxima. Мoskva: ALT Linux, 384.
  25. Walter, E. (2014). Numerical Methods and Optimization: a Consumer Guide. Springer, 476. doi:10.1007/978-3-319-07671-3
  26. Spasskii, К. N. (2009). Gidravlika i gidravlicheskie mashiny. Мoskva: МGOU, 176.
  27. Gudilin, N. S., Krivenko, Е. М., Makhovikov, B. S., Pastoev, I. L.; In: Pastoev, I. L. (2007). Gidravlika i gidroprivod. Ed. 4. Мoskva: Izd-vo «Gornaia kniga», Izd-vo Moskovskogo gosudarstvennogo gornogo universiteta, 519.
  28. Graham, R., Knuth, D., Patashnic, O. (1998). Concrete Mathematics. A Founfation for Computer Science. Ed. 2. Addison-Wesley, 657.

Published

2015-04-02

How to Cite

Гумен, О. М., Мілейковський, В. О., & Дзюбенко, В. Г. (2015). Approximate solution of the Navier-Stokes equation for digonal ducts. Technology Audit and Production Reserves, 2(5(22), 42–50. https://doi.org/10.15587/2312-8372.2015.41212

Issue

Section

Mathematical Modeling: Original Research