Approximate solution of the Navier-Stokes equation for digonal ducts
DOI:
https://doi.org/10.15587/2312-8372.2015.41212Keywords:
laminar flow, digonal duct, heat utilization, polymer film, polymer heat exchanger, underground waterAbstract
This article presents the analysis of the pressure laminar flow in the digonal duct with the section formed by two equal arcs. Such ducts are used in soft film heat exchangers. In addition, they are formed in rocks for underground water. The first attempt was to perform the analysis similarly to flows in round pipes. This direction gives wrong parabolic velocity profile with a rib at the long axis of the digonal section. In addition, it causes pressure drop calculation results understated up to 14,3 %. Therefore, to obtain adequate results we need to solve the Navier-Stokes equation. We propose a grid with unequal steps for this kind of section and solve the equation numerically. The convergence is very quick. For most of the tasks, it is enough to use a 4×4 grid. To integrate the profile in case of very quick convergence and a sparse grid the interpolation with the highest possible order is required. We introduce a new coordinate system to map the digonal section to a rectangle. We perform polynomial interpolation of all nodes in the new coordinate system. The integration of this polynomial cause velocity field coefficient to converge on the 4×4 grid for most of the tasks (the error does not exceed 2,2 % compared to the 100×100 grid). We show possibility of pressure drop calculation with the same formula as for the round pipes with the error of no more than 2,86 %. However, we offer equations for more precise calculations of the pressure drop and velocity field coefficient.
References
- Kezlia, Е. А. (1988). Vozdukhonagrevatel iz polimernoi plenki dlia sistem vozdushnogo otopleniia teplits. Kyiv, 20.
- Alishaev, М. G. (2013). Tochnye resheniia laminarnogo dvizheniia viazkoi zhidkosti po priamolineinym trubam nekruglykh sechenii. Dagestanskie elektronnye matematicheskie izvestiia, Vol. 1, 88-102. Available: http://mathreports.ru/static?id=130
- Khmelnik, S. I. (2010). Uravnenie Navie-Stoksa. Sushchestvovanie i metod poiska globalnogo resheniia. Izrail: MiC, 108.
- Aliamovskii, А. А., Sobachkin, А. А., Odintsov, Е. V., Kharitonovich, А. I., Ponomarev, N. B. (2008). SolidWorks 2007/2008. Kompiuternoe modelirovanie v inzhenernoi praktike. Spb.: BKHV-Peterburg, 1040.
- Ströher, G. R., Nicoleti, J. F., Zaparoli, E. L., Ströher, G. L., Andrade, C. R. de. (2011, September 20). Avaliação de modelos RANS de turbulência para o problema de jato livre circular axissimétrico. Acta Scientiarum. Technology, Vol. 33, № 4, 425-433. doi:10.4025/actascitechnol.v33i4.8312
- Topcu, O. (2012). CFD-DP Modeling of Multiphase Flow in Dense Medium Cyclone. CFD Letters, 4 (1), 33-42.
- Subodh Bahirat, Joshi, P. V. (2014). CFD Analysis of Plate Fin Tube Heat Exchanger for Various Fin Inclinations. International Journal of Engineering Research and Applications, Vol. 4, № 8, 116-125.
- Al-Dulaimy, F. M. (2013). Assessment of two phase flow in a venture convergent- divergent nozzle. Tikrit Journal of Engineering Science, Vol. 15, № 2, 17-31.
- Saeed Baghdar Hosseini, Mahdi Ahmadvand, Ramin Haghighi Khoshkhoo, Hassan Khosravi. (2013). The Experimental and Simulations Effect of Air Swirler on Pollutants from Biodiesel Combustion. Research Journal of Applied Sciences, Engineering and Technology, Vol. 5, № 18, 4556-4562.
- Kayne, A., Agarwal, R. (2013). Computational fluid dynamics modeling of mixed convection flows in buildings enclosures. International Journal of Energy and Environment, Vol. 4, № 6, 911-932. doi:10.1115/es2013-18026
- Pimpun Tongpun, Eakarach Bumrungthaichaichan, Santi Wattananusorn. (2014). Investigation of entrance length in circular and noncircular conduits by computational fluid dynamics simulation. Songklanakarin Journal of Science and Technology, Vol. 36, № 4, 471-475.
- Rajat Gupta, Rituraj Gautam, Siddhartha Sankar Deka. (2014). CFD study of a twisted blade H-Darrieus wind turbine. International Journal of Energy and Environment, Vol. 5, № 4, 505-520.
- Cheng, W., Nie, W., Zhou, G., Yang, J. (2013, February 1). Research on Eddy Air-Curtain Dust Controlled Flow Field in Hard Rock Mechanized Driving Face. Journal of Networks, Vol. 8, № 2, 453-460. doi:10.4304/jnw.8.2.453-460
- Li, Z., Agarwal, R., Gao, H. (2013). Development of DMC controllers for temperature control of a room deploying the displacement ventilation HVAC system. International Journal of Energy and Environment, Vol. 4, № 3, 415-426. doi:10.1115/es2012-91007
- Hallanger, A., Sand, I. O. (2013). FD Wake Modelling with a BEM Wind Turbine Sub-Model. Modeling, Identification and Control: A Norwegian Research Bulletin, Vol. 34, № 1, 19–33. doi:10.4173/mic.2013.1.3
- Ramzi, M., AbdErrahmane, G. (2013). Passive Control via Slotted Blading in a Compressor Cascade at Stall Condition. Journal of Applied Fluid Mechanics, Vol. 6, № 4, 571-580.
- Harinaldi, Budiarso, Warjito, Engkos Achmad Kosasih, Rustan Tarakka, Sabar Pangihutan Simanungkalit, I Gusti Made Fredy Lay Teryanto. (2012). Modification of flow structure over a van model by suction flow control to reduce aerodynamics drag. Makara Seri Teknologi, Vol. 16, № 1, 15-21. doi:10.7454/mst.v16i1.1021
- Khudheyer, A. F., Mahmoud, M. Sh. (2011). Numerical analysis of fin-tube plate heat exchanger by using CFD technique. Journal of Engineering and Applied Sciences, Vol. 6, № 7, 1-12.
- Marzouk, O. A., Huckaby, E. D. (2010). Simulation of a Swirling Gas-Particle Flow Using Different k-epsilon Models and Particle-Parcel Relationships. Engineering Letters, Vol. 18, № 1, 56-67.
- Aliamovskii, А. А. (2010). SolidWorks Simulation. Kak reshat prakticheskie zadachi. Spb., BKHV-Peterburg, 448.
- Mooney, K., Höpken, J., Maric, T. (2014). Getting Started with OpenFOAM Technology. Birmingham-Mumbai: PACKT Publishing, 59. Available: https://www.safaribooksonline.com/library/view/getting-started-with/9781782161769/
- Babenko, К. I. (2002). Ocnovy chislennogo analiza. М.-Izhevsk: NITS “Reguliarnaia i khaoticheskaia dinamika”, 848.
- Alekseev, Е. R., Chesnokova, О. V., Rudchenko, Е. А. (2008). Scilab: Reshenie inzhenernykh i matematicheskikh zadach. Мoskva: ALT Linux; BINOM. Laboratoriia znaniy, 260.
- Chichkarev, Е. А. (2012). Kompiuternaia matematika s Maxima. Мoskva: ALT Linux, 384.
- Walter, E. (2014). Numerical Methods and Optimization: a Consumer Guide. Springer, 476. doi:10.1007/978-3-319-07671-3
- Spasskii, К. N. (2009). Gidravlika i gidravlicheskie mashiny. Мoskva: МGOU, 176.
- Gudilin, N. S., Krivenko, Е. М., Makhovikov, B. S., Pastoev, I. L.; In: Pastoev, I. L. (2007). Gidravlika i gidroprivod. Ed. 4. Мoskva: Izd-vo «Gornaia kniga», Izd-vo Moskovskogo gosudarstvennogo gornogo universiteta, 519.
- Graham, R., Knuth, D., Patashnic, O. (1998). Concrete Mathematics. A Founfation for Computer Science. Ed. 2. Addison-Wesley, 657.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Олена Миколаївна Гумен, Віктор Олександрович Мілейковський, Володимир Григорович Дзюбенко
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.