Factor-target analysis of multi-target control of brewing technological complex functioning

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.41453

Keywords:

optimization of beer production, factor analysis, situational changing, Ishikawa diagram

Abstract

The work is devoted to the issue of optimization of basic technological processes in beer production. A causal-target and factor-target analysis of the technological complex of the brewery was made, taking into account the mutual influence of the individual processes. We used the methods of factor analysis and cognitive modeling, which allowed to determine the set of attributes, flows, factors, life conditions of the brewery as an object of control and to form the structure of interaction between objects and factors. Factor-target analysis of the system was implemented on the basis of the expert survey using multidimensional scaling method for the further development of the scenario control system of technological complex of the brewery. Causal-target and factor-target diagrams for the process of brewing are given. The studies will help to better define the primary and secondary factors affecting the quality of the final product and resources usage. Scenario control system of beer making process will be established on the basis of the obtained data.

Author Biographies

Микола Сергійович Романов, National University of Food Technologies, 68 St. Vladimir str., Kyiv, Ukraine, 01601

Graduate student, Assistant

Department of Automation of control

Василь Дмитрович Кишенько, National University of Food Technologies, 68 St. Vladimir str., Kyiv, Ukraine, 01601

Candidate of Technical Sciences, Professor

Department of Automation of control

Анатолій Петрович Ладанюк, National University of Food Technologies, 68 St. Vladimir str., Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor

Department of Automation of control

References

  1. Kuntse, V., Mit, G. (2001). Tehnologiia soloda i piva. Translated from German. SPb: “Professiia”, 912.
  2. Domaretskyi, V. A., Prybylskyi, V. L., Mykhailov M. H. (2005). Tekhnolohiia ekstraktiv, kontsentrativ ta napoiv iz roslynnoi syrovyny. K.: Nova Knyha, 408.
  3. Meletiev, A. Ye., Todosiichuk, S. R., Koshova, V. M. (2007). Tekhnokhimichnyi kontrol vyrobnytstva solodu, pyva i bezalkoholnykh napoiv. K.: Nova knyha, 385.
  4. Novosel'tsev, V. I., Tarasov, B. V., Golikov, V. K., Demin, B. E. (2006). Teoreticheskie osnovy sistemnogo analiza. M.: Maior, 592.
  5. Anderson, R. C., Barnett, M., Jaisinghani, R. (2005, October). Rule-driven optimization boosts plant performance. Hydrocarbon Processing. Available: http://www.hydrocarbonprocessing.com/Article/2598830/Rule-driven-optimization-boosts-plant-performance.html
  6. O'Konnor, J., Makdermott, Ia. (2006). Iskusstvo sistemnogo myshleniia: Neobhodimye znaniia o sistemah i tvorcheskom podhode k resheniiu problem. Translated from English. M.: Al'pina Biznes Buks, 256.
  7. Rogov, E. V. (2001). Arhitektura sistemy analiza i obrabotki dannyh o povedenii protsessov. Vestnik Moskovskogo universiteta. Ser. 15. Vychisl. matem. i kibern., № 4, 36-45.
  8. Sharuda, S. S., Kyshenko, V. D. (2008). Linhvistychna aproksymatsiia tekhnolohichnykh pokaznykiv khlibopekarskoho vyrobnytstva. Shtuchnyi intelekt, 4, 188-193.
  9. Tolstova, Yu. N. (2006). Osnovy mnogomernogo shkalirovaniia. M.: KDU, 160.
  10. Maksimov, V. I. (2001). Kognitivnyi analiz i upravlenie razvitiem situatsii. Materialy 1-i mezhdunar. konferentsii, Vol. 2. M.: Institut problem upravleniia RAN, 10-22.
  11. Eremeev, A. P., Troitskii, V. V. (2003). Modeli predstavleniia vremennyh zavisimostei v intellektual'nyh sistemah podderzhki priniatiia reshenii. Izvestiia RAN. TiSU, № 5, 75-88.
  12. Yuditskii, S. A., Vladislavlev, P. N. (2002). Tehnologiia vybora tselei pri proektirovanii biznes sistem. Pribory i sistemy upravleniia, № 12, 60-66.
  13. Kulinich, A. A. (2002). Sistema modelirovaniia ploho opredelennyh nestatsionarnyh situatsii. Trudy vtoroi mezhdunarodnoi konferentsii «Kognitivnyi analiz i upravlenie razvitiem situatsii». M.: IPU RAN, 44-50.
  14. Kulinich, A. A. (2003). Metodologiia kognitivnogo modelirovaniia slozhnyh ploho opredelennyh situatsii. Izbrannye trudy vtoroi mezhdunarodnoi konferentsii po problemam upravleniia,17-19 iiunia 2003 g. M.: IPU RAN, 219-226.

Published

2015-04-02

How to Cite

Романов, М. С., Кишенько, В. Д., & Ладанюк, А. П. (2015). Factor-target analysis of multi-target control of brewing technological complex functioning. Technology Audit and Production Reserves, 2(3(22), 24–30. https://doi.org/10.15587/2312-8372.2015.41453

Issue

Section

Systems and Control Processes: Original Research