Evaluation and forecasting of quality of products on the basis of information mining techniques

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.44809

Keywords:

assessment and forecasting, product quality control, mining techniques

Abstract

Structural formalization of the process of evaluation and forecasting of quality in terms of the basic methods of quality control, prediction and quality control theory is done. The advantages of Data Mining methods for decision making in the management of product quality are proved. The requirements for mining techniques to improve the efficiency of data processing for solving hard-formalized problems of quality control in modern production are formulated. Intellectualization of modern methods of assessment and forecasting of quality will allow resolving the contradiction between the uncertainty of a priori information about the multi-dimensional properties of industrial production and the increasing demands on the reliability and efficiency of multi-criteria assessment of its quality in decision-making at various control levels.

Author Biographies

Наталья Анатольевна Зубрецкая, Kyiv National University of Technologies and Design, Str. Nemirovich-Danchenko, 2, Kyiv, 01011

Doctor of Technical Sciences, Professor

Department of Metrology, Standardization and Certification

 

Алексей Юрьевич Савченко, Kyiv National University of Technologies and Design, Str. Nemirovich-Danchenko, 2, Kyiv, 01011

Department of Metrology, Standardization and Certification

Сергей Сергеевич Федин, Kyiv National University of Technologies and Design, Str. Nemirovich-Danchenko, 2, Kyiv, 01011

Doctor of Technical Sciences, Professor

Department of Metrology, Standardization and Certification

References

  1. Zubretskaya, N. A., Fedin, S. S., Lystyuk, T. I. (2015). Aktual'nye nauchnye problemy otsenki kachestva promyshlennoi produktsii. Vesnik KNUTD, 2 (84), 205–213.
  2. Zubretskaya, N. (2015). Structural modeling of the production quality as a multidimensional object of measurement and control. Technology Audit And Production Reserves, 2(3(22)), 44-48. doi:10.15587/2312-8372.2015.41541
  3. Fedin, S. S., Zubretskaya, N. A. (2012). Otsenka i prognozirovanie kachestva promyshlennoi produktsii s ispol'zovaniem adaptivnyh sistem iskusstvennogo intellekta. K.: Interservis, 206.
  4. Zgurovskii, M. Z. (2005). Sistemnyi analiz: problemy, metodologiia, prilozheniia. K.: Naukova dumka, 744.
  5. Bouzeghoub, M., Kedad, Z. (2002). Quality in Data Warehousing. Advances in Database Systems, Vol. 25, 163–198. doi:10.1007/978-1-4615-0831-1_8
  6. Pedersen, T. B., Jensen, C. S. (2001). Multidimensional database technology. Computer, Vol. 34, № 12, 40–46. doi:10.1109/2.970558
  7. Knowledge Discovery Through Data Mining: What Is Knowledge Discovery. (1996). USA, IL: Tandem Computers Inc., 785.
  8. Witten, I., Eibe, F., Hall, M. (2011). Data Mining: Practical Machine Learning Tools and Technique. Ed. 3. Morgan Kaufmann, 664. doi:10.1016/b978-0-12-374856-0.00018-3
  9. Han, J.; In: Kamber, M., Gray, J. (2000). Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, 550.
  10. Petrushin, V. A., Khan, L. (2007). Multimedia Data Mining and Knowledge Discovery. Springer, 521. doi:10.1007/978-1-84628-799-2

Published

2015-05-28

How to Cite

Зубрецкая, Н. А., Савченко, А. Ю., & Федин, С. С. (2015). Evaluation and forecasting of quality of products on the basis of information mining techniques. Technology Audit and Production Reserves, 3(2(23), 23–26. https://doi.org/10.15587/2312-8372.2015.44809