Formulation of multi-criteria optimization problem for process a set of signals of strain gauge systems

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.44924

Keywords:

linguistic variable, fuzzy time series, multi-criteria optimization problem

Abstract

The study defines a set of linguistic variables allowing carrying out a classification of fuzzy signals. Using fuzzy classification signals it is constructed approximating relation that connected the maximum value of a signal received from one source to different systems of primary processing. The proposed algorithm allows narrowing down the set of solutions of formulated multi-criteria optimization problem, the use of which solves the problem of removing anomalies in the current set of signals.

We solve the practical problem of building information model estimating the mass of an object with a limited time of weighing, when the objects are moving at high speed. In practical observations it is revealed that in some cases, high-frequency stochastic noise formed dynamic phenomena occurring in the process of weighing, can strongly reject the measured time series of the real signal. It is the cause of abnormal situations occurring in the measurement of strain signals.

The developed algorithm allows handling certain abnormal situations arising in the measurement of strain gauge signal. This, in turn, improves the accuracy of estimating the mass of the object with a limited weighing time when objects moving with high speed processing.

Author Biographies

Николай Борисович Копытчук, Odessa National Polytechnic University, Shevchenko Avenue, 1a, Odessa, Ukraine, 65044

Doctor of Technical Sciences, Professor, pensioner

Department of Computer intellectual systems and networks

Петр Метталинович Тишин, Odessa National Polytechnic University, Shevchenko Avenue, 1a, Odessa, Ukraine, 65044

Candidate of Physical and Mathematical Sciences, Associate Professor

Department of Computer intellectual systems and networks

Игорь Николаевич Копытчук, Odessa National Polytechnic University, Shevchenko Avenue, 1a, Odessa, Ukraine, 65044

Senior Lecturer

Department of Computer intellectual systems and networks

Игорь Генрикович Милейко, Odessa National Polytechnic University, Shevchenko Avenue, 1a, Odessa, Ukraine, 65044

Candidate of Technical Sciences, Associate Professor

Department of Computer intellectual systems and networks

References

  1. Zadeh, L. A. (1965, June). Fuzzy sets. Information and Control, Vol. 8, № 3, 338–353. doi:10.1016/s0019-9958(65)90241-x
  2. Kruglov, V. V., Dli, M. I., Golunov, R. Yu. (2001). Nechetkaia logika i iskusstvennye neironnye seti. M.: Fizmatlit, 224.
  3. Shtovba, S. D. (2007). Proektirovanie nechetkih sistem sredstvami MATLAB. M.: Goriachaia liniia – Telekom, 288.
  4. Borisov, V. V., Kruglov, V. V., Fedulov, A. S. (2007). Nechetkie modeli i seti. M.: Goriachaia liniia – Telekom, 284.
  5. Rotshtein, A. P. (1999). Intellektual'nye tehnologii identifikatsii: nechetkaia logika, geneticheskie algoritmy, neironnye seti. Vinnitsa: UNIVERSUM-Vinnitsa, 320.
  6. Chandola, V. (2009). Anomaly Detection: A Survey. The University Of Minnesota, 72. – Available: http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf. Last accessed 19.04.2014.
  7. Cheboli, D. (2010). Anomaly Detection of Time Series. A thesis submitted to the Faculty of the Graduate School of the University of Minnesota, 75. Available: http://conservancy.umn.edu/bitstream/92985/1/. Last accessed 20.04.2014.
  8. Afanas'eva, T. V. (2013). Modelirovanie nechetkih tendentsii vremennyh riadov. Ul'ianovsk: UlGTU, 215.
  9. Kopytchuk, N. B., Tishin, P. M., Kopytchuk, I. N., Mileiko, I. G. (2015). Algoritm opredeleniia anomal'nyh situatsii dlia tenzometricheskih sistem. Visnyk Natsionalnoho tekhnichnoho universytetu "KhPI". Zbirnyk naukovykh prats. Seriia: Mekhaniko-tekhnolohichni systemy ta kompleksy, 21 (1130), 37–45
  10. Kopytchuk, N., Tishin, P., Kopytchuk, I., Mileiko, I. (2015). Construction of set of standards to improve the accuracy of expert assessments. ScienceRise, 4(2 (9)), 72–76. doi:10.15587/2313-8416.2015.41579
  11. Kopytchuk, N. B., Tishin, P. M., Kopytchuk, I. N., Mileiko, I. G. (2014, August). Postroenie aproksimmiruiushchei nechetkoi zavisimosti, dlia opredeleniia parametrov klassifikatsii anomalii. Sbornik statei po materialam XXXVI mezhdunarodnoi nauchno-prakticheskoi konferentsii «Innovatsii v nauke», 8 (33), 14–22.

Published

2015-05-28

How to Cite

Копытчук, Н. Б., Тишин, П. М., Копытчук, И. Н., & Милейко, И. Г. (2015). Formulation of multi-criteria optimization problem for process a set of signals of strain gauge systems. Technology Audit and Production Reserves, 3(2(23), 89–93. https://doi.org/10.15587/2312-8372.2015.44924