Binary-real coding of solutions in genetic algorithms

Authors

  • Александр Евгеньевич Мочалин Kyiv State Maritime Academy named after hetman Petro Konashevich-Sahaydachniy, str. Frunze 9, Kyiv, 04071, Ukraine https://orcid.org/0000-0002-1326-0181

DOI:

https://doi.org/10.15587/2312-8372.2015.44992

Keywords:

genetic algorithm, binary coding, real coding, optimization

Abstract

The problem of solutions coding in genetic algorithms was reviewed in this paper. The main classes of solutions coding are presented. Advantages and disadvantages of binary coding and real coding in genetic algorithms have been analyzed.

The main purpose of the research is to develop a new way of coding solutions in genetic algorithms. The method developed consists of two stages. Binary coding with the partition of solutions area into small intervals is applied during the first stage. Real coding is used at the second stage. This approach allows one to take advantages of both binary and real coding.

Comparative analysis of the efficiency of the new coding method in genetic algorithms for optimization of complex functions is carried out. Efficiency analysis has shown that the use of binary-real coding in genetic algorithms can solve the optimization problem with a quite high degree of accuracy at medium computational overhead.

Practical recommendations for using binary-real coding in various cases are presented.

Author Biography

Александр Евгеньевич Мочалин, Kyiv State Maritime Academy named after hetman Petro Konashevich-Sahaydachniy, str. Frunze 9, Kyiv, 04071

Candidate of Technical Science, Associate Professor

Department of information technology

References

  1. Gill, Ph. E., Murray, W., Wrigh, M. H. (1985). Practical Optimization. Translated from English. Moscow: Mir, 509.
  2. Kalitkin, N. N. (1978). Chislennye metody. M.: Nauka, 512.
  3. Gladkov, L. A., Kurejchik, V. V., Kurejchik, V. M. (2006). Geneticheskie algoritmy. M.: FIZMATLIT, 320.
  4. Whitley, D. (1994, June). A genetic algorithm tutorial. Statistics and Computing, Vol. 4, № 2, 65–85. doi:10.1007/bf00175354
  5. Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: A Bradford Book, 211.
  6. Kurejchik, V. V., Sorokoletov, P. V. (2008). Konceptual'naja model' predstavlenija reshenij v geneticheskih algoritma. Izvestija JuFU, 9, 7–12.
  7. Raidl, G. R. (1999). Weight-codings in a genetic algorithm for the multiconstraint knapsack problem. Proceedings of the Congress on Evolutionary Computation, Vol. 1, 596–603. doi:10.1109/cec.1999.781987
  8. Kurejchik, V. V., Rodzin, S. I. (2010). O pravilah predstavlenija reshenij v jevoljucionny algoritmah. Izvestija JuFU, 7, 13–22.
  9. Belea, R., Beldiman, L. (2003). A new method of gene coding for a genetic algorithm designed for parametric optimization. The Annals of University “Dunarea de Jos” of Galati, 3, 66–71.
  10. Teneev, V. A. (2006). Primenenie geneticheskih algoritmov s veshhestvennym krossoverom dlja minimizacii funkcij bol'shoj razmernosti. Intellektual'nye sistemy v proizvodstve, 1 (7), 93–107.
  11. Chakraborty, U. K., Janikow, C. Z. (2003, November). An analysis of Gray versus binary encoding in genetic search. Information Sciences, Vol. 156, № 3-4, 253–269. doi:10.1016/s0020-0255(03)00178-6
  12. Wright, A. (1991). Genetic algorithms for real parameter optimization. Foundations of Genetic Algorithms, Vol. 1, 205–218. doi:10.1016/b978-0-08-050684-5.50016-1

Published

2015-05-28

How to Cite

Мочалин, А. Е. (2015). Binary-real coding of solutions in genetic algorithms. Technology Audit and Production Reserves, 3(2(23), 41–45. https://doi.org/10.15587/2312-8372.2015.44992