Research of application possibility of magnetometric method for control of mechanical stresses of ship hull

Authors

DOI:

https://doi.org/10.15587/2312-8372.2015.48893

Keywords:

hull, ferromagnetic object of the control, mechanical stress, magnetic stray field

Abstract

The possibility of using magnetometric method to control the mechanical stresses of the hull is investigated in the article. The magnetic stray field of the hull as the ferromagnetic object control, created a uniform field of the Earth, is calculated for this purpose. The hull is represented as the totality of the surface field sources. It is compiled the Fredholm equation of the 2nd kind, which was reduced to a system of linear algebraic equations by approximating the surface of the object control set of elementary areas of rectangular shape. The average value of the normal component of the magnetization on each side of the platform has enabled to determine the magnetic field outside of the hull. Results of the study of the magnetic stray field of the hull showed that the voltage measuring range is sufficient to measure the modern magnetic modulation converters - ferroprobes. It is shown that this method is an effective method to control the mechanical stresses of the hull, which prevents exceeding the permissible stresses in the supporting structures of the ship, which could lead to the destruction of the hull.

Author Biography

Ольга Петровна Завальнюк, Kherson State Maritime Academy, 20, Ushakov ave., Kherson, Ukraine, 73000

Candidate of Technical Sciences, Associate Professor

Department of operation of marine electrical equipment and automation

References

  1. MSC/Circ.646. Recommendations for the fitting of Hull Stress Monitoring Systems. (06.06.1994). The official website of the International marine organization. Available: http://www.imo.org/. Last accessed 22.08.2015.
  2. ND N 2-020101-044. Rules for the Classification and Construction of Sea-Going Ships. Vol. 4. Part XVIII. General rules for the design and strength of bulk carriers. (2006). St. Petersburg: Classification society Russian Maritime Register of Shipping, 475.
  3. Common Structural Rules for Bulk Carriers. The official website of the Nippon Kaiji Kyokai (Class NK). Available: http://www.classnk.or.jp/. Last accessed 22.08.2015.
  4. Guide for hull condition monitoring systems. The official website of the American bureau of shipping. Available: http://www.eagle.org/. Last accessed 22.08.2015.
  5. Provisional Rules for the Classification of Hull Surveillance Systems SEA and SEA(R) notations. The official website of the Lloyd’s Register of Shipping. Available: http://www.lr.org/. Last accessed 22.08.2015.
  6. Investigation Report on Structural Safety of Large Container Ships. The official website of the Nippon Kaiji Kyokai (Class NK). Available: http://www.classnk.or.jp/. Last accessed 22.08.2015.
  7. Vagushchenko, L. L., Vagushchenko, A. L., Zaichko, S. I. (2005). Onboard automated control systems navigability. Odessa: FENIKS, 274.
  8. The software package «StabEdit». The official website of the Central Research Institute of marine fleet. Available: http://www.cniimf.ru/. Last accessed 22.08.2015.
  9. Hull Stress Monitoring System «HULLMOS». The official website of company ROUVARI OY (Finland). Available: http://www.rouvari.fi/. Last accessed 22.08.2015.
  10. The fiber optic hull stress monitoring system «SENSFIB». The official website of company Light Structures AS (Norwegian). Available: http://www.lightstructures.no/. Last accessed 22.08.2015.
  11. Hull Condition Monitoring System «HMON». The official website of WEIR-JONES GROUP (Canada). Available: http://www.weir-jones.com/. Last accessed 22.08.2015.
  12. Integrated Marine Monitoring System. The official website of BMT Scientific Marine Services (USA). Available: http://www.scimar.com/. Last accessed 22.08.2015.
  13. Miroshnikov, V. V., Zavalniuk, O. P., Nesterenko, V. B. (2015). Control of the general hull’s strength. Kherson: Grin’ D. S., 108.
  14. Magalhães, R. R., Junior, A. B. V., Barra, S. R. (2013, August 19). The use of conventional strain gauges evaluation for measurements of residual stresses in welded joints. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 36, № 1, 173–180. doi:10.1007/s40430-013-0082-2
  15. Sirkis, J. S., Taylor, C. E. (1988, June). Interferometric-fiber-optic strain sensor. Experimental Mechanics, Vol. 28, № 2, 170–176. doi:10.1007/bf02317568
  16. Trémolet de Lacheisserie, du É., Gignoux, D., Schlenker, M. (2002). Magnetoelastic EffectsMagnetoelastic Effects. Magnetism. New York: Springer, 351–398. doi:10.1007/978-0-387-23062-7_12
  17. In: Klyuyev, V. V. (2005). Nondestructive testing and diagnostics: handbook. M.: Mechanical Engineering, 656.
  18. Blitz, J. (1997). Electrical and Magnetic Methods of Non-destructive Testing. Springer Netherlands, 261. doi:10.1007/978-94-011-5818-3
  19. Xin, Q., Shu, D., Hui, L., Wei, W., Chen, J. (2012, January 25). Magnetic Barkhausen Noise, Metal Magnetic Memory Testing and Estimation of the Ship Plate Welded Structure Stress. Journal of Nondestructive Evaluation, Vol. 31, № 1, 80–89. doi:10.1007/s10921-011-0123-7
  20. Zavalniuk, O. P., Nesterenko, V. B. (2013). The use of coercimetry for analysis of technical condition of ship’s hull of different periods of maintenance. Control. Diagnostics, 4, 22–27.
  21. Matyuk, V. F., Kulagin, V. N. (2010). Control of structure, mechanical properties and stress state of ferromagnetic products by coercimetry. Nondestructive testing and diagnostics, 3, 4–13.
  22. Bezlyud'ko, G. Ya. (2003). Operational control of the fatigue state and resource of metal products by nondestructive (coercimetric) method. Technical diagnostics and non-destructive testing, 2, 20–26.
  23. Forslund, A. (2006). Designing a Miniaturized Fluxgate Magnetometer. Stockholm: Royal Institute of Technology, 81.
  24. Kabata, W., Vitorello, I. (2011). Technical procedures to select basic parameters of a fluxgate magnetometer. Revista brasileira de geofisica, 29 (3), 455–462.
  25. Miroschnikov, V. V., Kostin S. V., Karmanov, N. I., Martynenko N. V. (2012). The flux gate’s resonance mode of operation. Bulletin of the National Technical University «KhPI». Series: Power and transforming technique, 40, 35–46.
  26. Augustyniak, M., Usarek, Z. (2015, July 1). Discussion of Derivability of Local Residual Stress Level from Magnetic Stray Field Measurement. Journal of Nondestructive Evaluation, Vol. 34, № 3, 1–9. doi:10.1007/s10921-015-0292-x
  27. Tozoni, O. V., Mayyergoyz, I. D. (1974). The calculation of three-dimensional electromagnetic fields. Kyiv: Tekhnika, 352.
  28. Kurbatov, P. A., Arinchin, S. A. (1984). Numerical calculation of electromagnetic fields. Moscow: Energoatomazdat, 164.
  29. Rozenblat, M. A. (1966). Magnetic elements of automation and computer technology. Moscow: Nauka, 720.
  30. Krupin, V. G., Pavlov, A. L., Popov, L. G. (2010). The equations of mathematical physics. Collection of tasks. Moscow: Izdatel'skiy dom MEI, 353.
  31. Tom, R., Tarr, J.; Translated from English: Gorshkov, Yu. A. (1985). The magnetic MHD generators system and thermonuclear installations: bases of calculation of the magnetic fields and forces. Moscow: Energoatomazdat, 268.
  32. Zavalniuk, O. P., Miroschnikov, V. V. (2012). Magnetic control of ship hulls during cargo and ballast operations. Bulletin of the Volodymyr Dahl East Ukrainian National University, 18 (189), 76–82.
  33. Prokhorov, A. M., Alekseyev, D. M., Baldin, A. M., Bonch-Bruyevich, A. M., Borovik-Romanov, A. S. et al. (1990). Physical encyclopedia. Vol. 2. Dobrotnost' Magnitooptika. Moscow: Sov. entsiklopediya, 704.
  34. In: Nikitskiy, V. Ye., Glebovskiy, Yu. S. (1990). Magnetic exploration: Guide of geophysicist. Ed. 2. Moscow: Nedra, 470.

Published

2015-09-22

How to Cite

Завальнюк, О. П. (2015). Research of application possibility of magnetometric method for control of mechanical stresses of ship hull. Technology Audit and Production Reserves, 5(3(25), 4–9. https://doi.org/10.15587/2312-8372.2015.48893

Issue

Section

Systems and Control Processes: Original Research