Exploration of describing the vector-parametric bi-spline, defined by the forth degree spline with control points incident with surface of appropriate smoothness

Authors

  • Александр Михайлович Ковтун Izmail Faculty of Odessa National Maritime Academy, 9, Fanagoriyskaja Str., Izmail, Odessa Region, Ukraine, 68600, Ukraine https://orcid.org/0000-0002-6531-2561

DOI:

https://doi.org/10.15587/2312-8372.2015.51287

Keywords:

vector & parametric spline, bispline, spline with control points incidental to curved surface, third degree smoothness

Abstract

The article proposes description technique for spline vector & parametrical surfaces of the fourth degree with control points incidental to the surface and gives  testing examples of application of this technique. Main purpose of researches is to develop an algorithm for solving some application problems which often impose specific demands to tools available with developers’ or designers’ workplace. For instance, it sometime becomes troublesome to produce smooth configuration, since the obtained curve does not belong to pre-set dotted carcass.

The technique of producing a vector & parametrical bispline with control points incidental (belonging) to relevant surface is proposed to overcome such inconvenience. Hence, a polynomial function of the fourth degree determined with five points x0, y0, x1, y1, x2, y2, x3, y3, x4, y4  may be represented, as below:

 

with function αi(u) being the Lagrange polynomial coefficients.

Polynomial equation in matrix format may be expressed, as follows:

 

With provided derivatives equity up to the third degree (inclusive) the equity of compound derivatives along the gluing line criterion is also met (i. e. continuity of the second quadric form is achieved throughout the entire surface). Equity of the compound derivatives should be achieved to obtain fine smoothness of the third degree surface, i. e.:

 

Calculation formulae for spline with third degree of smoothness should be applied to achieve this effect. Thus linear equations system with quadrodiagonal leading matrix may be obtained by means of preset three boundary conditions (thus increasing the flexibility of the method) providing a stable and unambiguous solution. Algorithm for development of the fourth degree bispline with control points belonging to relevant surface is developed. Results of the research may be helpful for developers, designers, APS users providing them with additional opportunities in developing smooth curved contours for elements and parts of machinery operating in mobile environments.

Test examples are provided for the fourth degree bisplines with third degree smoothness with control points incidental to the surface.

The proposed algorithm is suggested for implementation to improve efficient work of constructors, designers, developers. 

Author Biography

Александр Михайлович Ковтун, Izmail Faculty of Odessa National Maritime Academy, 9, Fanagoriyskaja Str., Izmail, Odessa Region, Ukraine, 68600

Candidate of Technical Sciences, Associate Professor

Department of General Technical Subjects 

References

  1. Fox, A., Pratt, M. (1982). Vychislitel'naia geometriia. Translated from English. Moscow: Mir, 304.
  2. Zav'ialov, Yu. S., Kvasov, B. I., Miroshnichenko, V. L. (1982). Metody splain-funktsii. Moscow: Nauka, 352.
  3. Kovtun, O. M. (2004). Polinomialni splainy chetvertoho stepenia. Prykladna heometriia ta inzhenerna hrafika, 74, 239–243.
  4. Golovanov, N. N. (2002). Geometricheskoe modelirovanie. Moscow: Izdatel'stvo Fiziko-matematicheskoi literatury, 472.
  5. Rogers, D., Adams, J. (2001). Matematicheskie osnovy mashinnoi grafiki. Moscow: Mir, 604.
  6. Yakunin, V. I. (1980). Geometricheskie osnovy avtomatizirovannogo proektirovaniia tehnicheskih poverhnostei. Moscow: Mai, 86.
  7. Zav'ialov, Yu. S., Leus, V. A., Skorospelov, V. A. (1985). Splainy v inzhenernoi geometrii. Moscow: Mashinostroenie, 224.
  8. Watt, A. (2000). 3D Computer Graphics. Ed. 3. Addison-Wesley, 570.
  9. Zamani, M. (2010). A simple 2D interpolation model for analysis of nonlinear data. Natural Science, Vol. 02, № 06, 641–645. doi:10.4236/ns.2010.26080
  10. Chen, L., Hu, S. (2011, May). A Comparison of Improvements for Shear Warp Algorithm Using Lagrange or Cubic Spline Interpolation. 2011 5th International Conference on Bioinformatics and Biomedical Engineering. Institute of Electrical & Electronics Engineers (IEEE), 1–4. doi:10.1109/icbbe.2011.5780354
  11. Herman, G. T., Bucholtz, C. A., Jingsheng Zheng. (1991). Shape-based Interpolation Using Modified Cubic Splines. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 13, № 1, 291–292. doi:10.1109/iembs.1991.683941
  12. Badaev, Yu. I., Kovtun, A. M. (2011). Spetsial'nye splainy iz polinomov tret'ei, chetviortoi i piatoi stepenei v geometricheskom modelirovanii. Odessa: Feniks, 315.
  13. Badaiev, Yu. I., Kovtun, O. M. (2003). Aproksymatsiia splainamy na osnovi kryvykh z intsydentnymy tochkamy. Suchasni problemy heometrychnoho modeliuvannia. Pratsi Natsionalnoho universytetu «Lvivska politekhnika» (spetsvypusk). Materialy mizhnarodnoi naukovo-praktychnoi konferentsii. Lviv: Natsionalnyi universytet «Lvivska politekhnika», 75–77.
  14. Badaiev, Yu. I., Kovtun, O. M. (2003). Vektorno-parametrychni sehmenty, poverkhni ta tila za intsydentnymy z nymy tochkamy. Prykladna heometriia ta inzhenerna hrafika. Pratsi Tavriiskoi derzhavnoi ahrotekhnichnoi akademii, Vol. 4, № 18. Melitopol: TDATA, 37–40.

Published

2015-09-22

How to Cite

Ковтун, А. М. (2015). Exploration of describing the vector-parametric bi-spline, defined by the forth degree spline with control points incident with surface of appropriate smoothness. Technology Audit and Production Reserves, 5(7(25), 4–7. https://doi.org/10.15587/2312-8372.2015.51287